精英家教网 > 高中数学 > 题目详情
19.已知角α的终边上有一点P(1,-1),则cosα=(  )
A.$\frac{\sqrt{3}}{3}$B.1C.$\sqrt{3}$D.$\frac{\sqrt{2}}{2}$

分析 首先求出P到原点的距离,然后利用三角函数的定义解答.

解答 解:由已知,得到P到原点的距离为$\sqrt{2}$,所以cosα=$\frac{1}{\sqrt{2}}=\frac{\sqrt{2}}{2}$;
故选:D.

点评 本题考查了三角函数的定义;如果终边上的点P(x,y),那么cos$α=\frac{x}{\sqrt{{x}^{2}+{y}^{2}}}$.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

9.在平面直角坐标系中,横坐标、纵坐标均为整数的点称为整点,如果函数f(x)的图象恰好通过n(n∈N*)个整点,则称函数f(x)为n阶整点函数.有下列函数:
①f(x)=sin2x;  
②g(x)=x3
③h(x)=($\frac{1}{3}$)x
④φ(x)=lnx.
其中是一阶整点函数有(  ) 个.
A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.2015年10月18日青运会开幕,为了更好的迎接青运会,做好夏季降温的同时要减少能源损耗.福州市海峡奥体中心的体育馆外墙需要建造隔热层.体育馆要建造可使用30年的隔热层,每厘米厚的隔热层建造成本为2万元.该建筑物每年的能源消耗费用C万元与隔热层厚度xcm满足关系:C(x)=$\frac{k}{x+5}$(0≤x≤10,k为常数),若不建隔热层,每年能源消耗费用为3万元.设f(x)为隔热层建造费用与30年的能源消耗费用之和.
(1)求k的值及f(x)的表达式;
(2)隔热层修建多厚时,总费用f(x)达到最小?并求最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知函数f(x)=x-$\frac{a}{x}$+b(2-lnx)在x=1处的切线的斜率为零.
(Ⅰ)试用含a的代数式表示b;
(Ⅱ)若函数f(x)在区间[2,3]上单调递增,求实数a的取值范围;
(Ⅲ)是否存在实数a,使得函数y=f(x)图象与直线y=2a有两个交点?若存在,求出所有a的值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.给出下列命题:
①定义在R上的函数f(x)满足f(2)>f(1),则f(x)一定不是R上的减函数;
②用反证法证明命题“若实数a,b,满足a2+b2=0,则a,b都为0”时,“假设命题的结论不成立”的叙述是“假设a,b都不为0”.
③把函数y=sin(2x+$\frac{π}{3}$)的图象向右平移$\frac{π}{6}$个单位长度,所得到的图象的函数解析式为y=sin2x.
④“a=0”是“函数f(x)=x3+ax2(x∈R)为奇函数”的充分不必要条件.
其中所有正确命题的序号为①③.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.如表是某厂生产某产品过程中记录的产量x(吨)与相应的生产能耗y(吨)标准煤的几组统计数据:
x34567
y5.88.29.712.214.1
(1)请根据如表提供的数据,用最小二乘法求出y关于x的线性回归方程$\widehat{y}$=$\widehat{b}$x+$\widehat{a}$;
(2)判断变量x与y之间是正相关还是负相关,并估计产量为20吨时,生产能耗为多少吨标准煤?
参考数值:3×5.8+4×8.2+5×9.7+6×12.2+7×14.1=270.6.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知函数$y=sin({\frac{1}{2}x+\frac{π}{3}}),x∈[{0,π}]$
(1)求函数的单调区间;
(2)求函数的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.化简:$\frac{{cos({2π-α})•tan({\frac{π}{2}+α})•tan({α-π})}}{{cos({\frac{3π}{2}+α})•cot({3π-α})}}$=1.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.(1-i)2•i等于(  )
A.2-2iB.2+2iC.2D.-2

查看答案和解析>>

同步练习册答案