精英家教网 > 高中数学 > 题目详情
已知函数f(x)=x3-3x2+5 求该函数的单调区间和极值,求函数在区间[-1,3]上的最值.
考点:利用导数求闭区间上函数的最值,利用导数研究函数的单调性,利用导数研究函数的极值
专题:导数的综合应用
分析:求导数f′(x),解不等式f′(x)>0,f′(x)<0,即可得单调区间,由极值定义可求得极值;求出函数在区间端点处的函数值,与极值作比较,其中最大者为最大值,最小者为最小值;
解答: 解:函数f(x)=x3-3x2+5,所以f′(x)=3x2-6x,
由f′(x)>0,即3x2-6x>0,得x<0或x>2,由f′(x)<0,得0<x<2,
所以f(x)的增区间是(-∞,0),(2,+∞),减区间是(0,2).
所以当x=0时f(x)取得极大值f(0)=5,当x=2时f(x)取得极小值f(2)=1.
函数在区间[-1,3]时,f(-1)=1,f(3)=5,又由(0)知极大值f(0)=5,极小值f(2)=1,
所以f(x)在[-1,3]上的最大值为5,最小值为1.
点评:本题考查利用导数研究函数的单调性、极值与闭区间上的最值问题,准确求导,弄清导数与函数性质间的关系是解题关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

在△ABC中,已知(sinA+sinB+sinC)(sinB+sinC-sinA)=3sinBsinC.
(1)求角A的大小;
(2)设O为△ABC的外心(三角形各边中垂线的交点),当BC=
13
,△ABC的面积为3
3
时,求
AO
BC
的值;
(3)设AD为△ABC的中线,当BC=2
3
时,求AD长的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)=lnx-x2+ax.
(1)若函数f(x)在(0,1]上单调递增,试求a的取值范围;
(2)设函数f(x)在点C(x0,f(x0))(x0为非零常数)处的切线为l,证明:函数f(x)图象上的点都不在直线l的上方.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=1-
a
2x+1
在R上是奇函数.
(1)求a;
(2)对x∈(0,1],不等式s•f(x)≥2x-1恒成立,求实数s的取值范围;
(3)令g(x)=
1
f(x)-1
,若关于x的方程g(2x)-mg(x+1)=0有唯一实数解,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)是定义在(0,+∞)上的函数,且对于任意的实数x,y有f(xy)=f(x)+f(y),当x>1时,f(x)>0.
(1)求证:f(x)在(0,+∞)上是增函数;
(2)若f(2)=1,对任意实数t,不等式f(t2+1)-f(t2-kt+1)≤2恒成立,求实数k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

南昌市为增强市民的交通安全意识,面向全市征召“小红帽”志愿者在部分交通路口协助交警维持交通,把符合条件的1000名志愿者按年龄分组:第1组[20,25)、第2组[25,30)、第3组[30,35)、第4组[35,40)、第5组[40,45),得到的频率分布直方图如图所示:
(1)若从第3、4、5组中用分层抽样的方法抽取12名志愿者在五一节这天到广场协助交警维持交通,应从第3、4、5组各抽取多少名志愿者?
(2)在(1)的条件下,南昌市决定在这12名志愿者中随机抽取3名志愿者到学校宣讲交通安全知识,若ξ表示抽出的3名志愿者中第3组的人数,求ξ的分布列和数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知平面α,β,γ,δ,其中γ∩δ=l,α∩γ=a,β∩γ=a′,a∥a′;α∩δ=b,β∩δ=b′,b∥b′.上述条件能否保证有α∥β?若能,给出证明;若不能,添加适当的条件,保证有α∥β.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
2x+3
3x
,数列{an}满足a1=1,an+1=f(
1
an
)(n∈N*).
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)令bn=
1
anan+1
,Sn=b1+b2+…bn,若Sn
m-2015
2
对一切n∈N*成立,求最小正整数m.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知a>0,b>0,求证:(a3+b3 
1
3
<(a2+b2 
1
2

查看答案和解析>>

同步练习册答案