精英家教网 > 高中数学 > 题目详情
13.已知全集A=(-2,3),集合B=[2a,a+2],若A∩B=B,求a的范围.

分析 分两种情况考虑:若B为空集与B不为空集,分别求出a的范围即可.

解答 解:当B=∅时,则有2a≥a+2,即a≥2,此时满足A∩B=B;
当B≠∅时,由A=(-2,3),集合B=[2a,a+2],且A∩B=B,得到$\left\{\begin{array}{l}{2a≥-2}\\{a+2≤3}\end{array}\right.$,
解得:-1≤a≤1,
综上,a的范围为-1≤a≤1或a≥2.

点评 此题考查了交集及其运算,熟练掌握交集的定义是解本题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

3.求函数y=arcsin(sinx)的定义域、值域、判断它的奇偶性、单调性、周期性.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.若函数f(x)=e2x+1-ax+1,a∈R.
(1)f(x)的单调递增区间;
(2)若f(x)≥1,对任意x∈[0,1]都成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知点P是椭圆$\frac{{x}^{2}}{9}$+y2=1上一点,F1,F2是椭圆的焦点且∠F1PF2=90°,求△F1PF2的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知函数f(x)=$\frac{lnx}{x}$.
(1)求f(x)在x=1处的切线方程及f(x)的单调区间;
(2)求f(x)在[2a,4a](a>0)上的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知an=3n,bn=3n,n∈N*,对于每一个k∈N*,在ak与ak+1之间插入bk个3得到一个数列{cn},设Tn是数列{cn}的前n项和,则所有满足Tm=3cm+1的正整数m的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知三个非零向量$\overrightarrow{a}$,$\overrightarrow{b}$,$\overrightarrow{c}$满足条件$\overrightarrow{a}$+$\overrightarrow{b}$+$\overrightarrow{c}$=$\overrightarrow{0}$,试问表示它们的有向线段是否一定能构成三角形?$\overrightarrow{a}$,$\overrightarrow{b}$,$\overrightarrow{c}$满足什么条件才能构成三角形?

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.应用正弦定理证明:在△ABC中,大角对大边,大边对大角.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.用数学归纳法证明:对于任意大于1的正整数n,不等式$\frac{1}{{2}^{2}}$+$\frac{1}{{3}^{2}}$+…+$\frac{1}{{n}^{2}}$<$\frac{n-1}{n}$都成立.

查看答案和解析>>

同步练习册答案