精英家教网 > 高中数学 > 题目详情
3.用数学归纳法证明:对于任意大于1的正整数n,不等式$\frac{1}{{2}^{2}}$+$\frac{1}{{3}^{2}}$+…+$\frac{1}{{n}^{2}}$<$\frac{n-1}{n}$都成立.

分析 利用数学归纳法证明即可,注意在证明当n=k+1时,利用$\frac{1}{(k+1)^{2}}$<$\frac{1}{k(k+1)}$即可.

解答 证明:(1)当n=2时,左边=$\frac{1}{{2}^{2}}$=$\frac{1}{4}$,右边=$\frac{1}{2}$,左边<右边,成立;
(2)假设当n=k(k∈N*,k≥2)时,不等式$\frac{1}{{2}^{2}}$+$\frac{1}{{3}^{2}}$+…+$\frac{1}{{k}^{2}}$<$\frac{k-1}{k}$都成立.
则当n=k+1时,左边=$\frac{1}{{2}^{2}}$+$\frac{1}{{3}^{2}}$+…+$\frac{1}{{k}^{2}}$+$\frac{1}{(k+1)^{2}}$<$\frac{k-1}{k}$+$\frac{1}{(k+1)^{2}}$<$\frac{k-1}{k}$+$\frac{1}{k(k+1)}$=$\frac{k}{k+1}$=$\frac{(k+1)-1}{k+1}$=右边.
∴当n=k+1时,不等式成立.
综上可得:对于任意大于1的正整数n,不等式$\frac{1}{{2}^{2}}$+$\frac{1}{{3}^{2}}$+…+$\frac{1}{{n}^{2}}$<$\frac{n-1}{n}$都成立.

点评 本题考查了数学归纳法、“放缩法”、不等式的性质,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

13.已知全集A=(-2,3),集合B=[2a,a+2],若A∩B=B,求a的范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.设α、β、γ为不重合平面,m、n为不重合直线,下列命题正确的是③⑤
①α⊥γ,β⊥γ⇒α∥β;②α⊥β,m?α,n?β⇒m⊥n;③α∥β,m?α⇒m∥β;④α∥β,m?α,n?β⇒m∥n;⑤α∥β,m∥n,m⊥α⇒n⊥β;⑥α⊥β,m⊥α⇒m∥β

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.P(x0,y0)是圆x2+y2=R2内异于圆心的一点,则直线x0x+y0y=R2与圆x2+y2=R2的位置关系是(  )
A.相交B.相切C.相离D.不能确定

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.若a、b为任意非零实数,且a>b,则下列不等式成立的是(  )
A.$\frac{1}{a}<\frac{1}{b}$B.$\frac{b}{a}<1$C.lg(a-b)>0D.${(\frac{1}{3})^a}<{(\frac{1}{3})^b}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知集合A={x|3≤x<7},函数f(x)=lg(-x2+12x-20)的定义域为集合B,集合C={x|5-a<x<a}.
(1)求B,A∪B,(∁RA)∩B;
(2)若C⊆(A∪B),求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知集合A={x|3≤x<7},B={x|2<x<10},求∁R(A∩B),A∪(∁RB)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.函数f(x)=|x+a|在(-∞,-1)上是单调函数,求a的范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.若A,B为椭圆$\frac{{y}^{2}}{{a}^{2}}$+$\frac{{x}^{2}}{{b}^{2}}$=1(a>b>0)的长轴两端点,Q为椭圆上一点,使∠AQB=120°,求此椭圆离心率最小值为$\frac{\sqrt{6}}{3}$.

查看答案和解析>>

同步练习册答案