精英家教网 > 高中数学 > 题目详情
12.函数f(x)=|x+a|在(-∞,-1)上是单调函数,求a的范围.

分析 可得函数在(-∞,-a)单调递减,在(-a,+∞)单调递增,要满足题意需-a≥-1,解关于a的不等式可得.

解答 解:化简可得f(x)=|x+a|=$\left\{\begin{array}{l}{x+a,x≥-a}\\{-x-a,x<-a}\end{array}\right.$,
∴函数在(-∞,-a)单调递减,在(-a,+∞)单调递增,
要使函数在(-∞,-1)上是单调函数,
只需-a≥-1,解得a≤1.

点评 本题考查带绝对值函数的单调性,化为分段函数是解决问题的关键,属基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

2.应用正弦定理证明:在△ABC中,大角对大边,大边对大角.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.用数学归纳法证明:对于任意大于1的正整数n,不等式$\frac{1}{{2}^{2}}$+$\frac{1}{{3}^{2}}$+…+$\frac{1}{{n}^{2}}$<$\frac{n-1}{n}$都成立.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.如图,空间四边形ABCD各边边长均为a,M,N分别是对角线BD,AC的中点.
(1)求证:MN⊥BD;
(2)求直线AB,CD所成角的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知{an}是递增的等差数列,a1=f(x),a2=4,a3=f(x+2),其中f(x)=x2+2
(1)求数列{an}的前n项和Sn
(2)令bn=$\sqrt{{S}_{1}}$+$\sqrt{{S}_{2}}$+…+$\sqrt{{S}_{n}}$,[x]表示不超过x的最大整数(例如,[2.1]=2)
①分别写出[2$\sqrt{{S}_{1}}$],[$\sqrt{{S}_{1}}$+$\sqrt{{S}_{2}}$]的值;
②令cn=[$\frac{2{b}_{n}}{n}$],求数列{cn}的通项公式.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知函数f(x)=$\left\{\begin{array}{l}{{x}^{3}+a{x}^{2}+bx\\;x∈[-1,2)}\\{\frac{1}{x}+tlnx\\;x∈[2,4]}\end{array}\right.$且函数f(x)在x=1和x=-$\frac{2}{3}$处取得极值.
(1)求a,b的值;
(2)求函数f(x)在[-1,2)上的单调递增区间;
(3)是否存在一个实数m<2,使得函数f(x)在区间[m,4]上单调递增,求满足该条件的m的最小值和此时实数t的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.光线从点Q(2,0)出发,射到直线l:x+y=4上的点E,经l反射到y轴上的点F,再经y轴反射又回到点Q.
(1)求点Q关于直线l的对称点Q′的坐标;
(2)求直线EF的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知直线x-y-1=0与椭圆(n-1)x2+ny2-n(n-1)=0(n>1)交于A、B两点,若以AB为直径的圆过椭圆的左焦点F,求实数的n值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知函数y=a+$\sqrt{-{x}^{2}+ax-b}$的值域为[4,7],求a,b的值.

查看答案和解析>>

同步练习册答案