精英家教网 > 高中数学 > 题目详情

【题目】如图,在四棱锥中,,点在线段上,且

(Ⅰ)求证:

(Ⅱ)求二面角的正弦值;

(Ⅲ)在线段上是否存在点,使得,若存在,求出线段的长,若不存在,说明理由.

【答案】(Ⅰ)见解析;

)存在,线段的长.

【解析】

(Ⅰ)在四边形,可以证明出,以为空间直角坐标系的原点,建立空间直角坐标系,求出相应点的坐标,利用,可以证明出

(Ⅱ)求出平面的法向量、平面的法向量,利用空间向量的数量积求出向量夹角的余弦值的绝对值,利用同角三角函数关系式,求出二面角的正弦值;

(Ⅲ)设存在线段上存在点,使得,设的坐标,求出平面的法向量,利用与平面的法向量垂直,可以求出的坐标,进而求出线段的长.

(Ⅰ)在四边形中,,根据勾股定理,可求出,利用勾股定理的逆定理可知:,以为空间直角坐标系的原点,建立空间直角坐标系,如图所示:

所以,因为

所以,因此可求出坐标为,

因为,所以;

(Ⅱ)设平面的法向量为,,

设平面的法向量为,

的夹角为

(Ⅲ)设存在线段上存在点,使得

,设平面的法向量为,

,

,

因为,所以,

.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】某校100名学生期中考试语文成绩的频率分布直方图如图所示,其中成绩分组区间是:[50,60)[60,70)[70,80)[80,90)[90,100]

(1)求图中a的值;

(2)根据频率分布直方图,估计这100名学生语文成绩的平均分;

(3)若这100名学生语文成绩某些分数段的人数(x)与数学成绩相应分数段的人数(y)之比如下表所示,求数学成绩在[50,90)之外的人数.

分数段

[50,60)

[60,70)

[70,80)

[80,90)

xy

11

21

34

45

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知是圆上的一个动点,过点作两条直线,它们与椭圆都只有一个公共点,且分别交圆于点.

(Ⅰ)若,求直线的方程;

(Ⅱ)①求证:对于圆上的任意点,都有成立;

②求面积的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某城市为鼓励人们绿色出行,乘坐地铁,地铁公司决定按照乘客经过地铁站的数量实施分段优惠政策,不超过站的地铁票价如下表:

乘坐站数

票价(元)

现有甲、乙两位乘客同时从起点乘坐同一辆地铁,已知他们乘坐地铁都不超过站.甲、乙乘坐不超过站的概率分别为 ;甲、乙乘坐超过站的概率分别为 .

(1)求甲、乙两人付费相同的概率;

(2)设甲、乙两人所付费用之和为随机变量,求的分布列和数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

1)设

若函数处的切线过点,求的值;

时,若函数上没有零点,求的取值范围;

2)设函数,且),求证:当时,

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数fx)=ex+ax2+bxe为自然对数的底,ab为常数),曲线yfx)在x0处的切线经过点A(﹣1,﹣1

1)求实数b的值;

2)是否存在实数a,使得曲线yfx)所有切线的斜率都不小于2?若存在,求实数a的取值集合,若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知直线与椭圆:交于两点.

1)若线段的中点为,求直线的方程;

2)记直线轴交于点,是否存在点,使得始终为定值?若存在,求点的坐标,并求出该定值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数,其中

(Ⅰ)当时,求函数在点处的切线方程;

(Ⅱ)设函数的导函数是,若不等式对于任意的实数恒成立,求实数的取值范围;

(Ⅲ)设函数是函数的导函数,若函数存在两个极值点,且,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在极坐标系中,曲线,曲线.以极点为坐标原点,极轴为轴正半轴建立平面直角坐标系,曲线的参数方程为为参数).

(1)求的直角坐标方程;

(2)交于不同的四点,这四点在上排列顺次为,求的值.

查看答案和解析>>

同步练习册答案