【题目】已知直线与椭圆:交于两点.
(1)若线段的中点为,求直线的方程;
(2)记直线与轴交于点,是否存在点,使得始终为定值?若存在,求点的坐标,并求出该定值;若不存在,请说明理由.
科目:高中数学 来源: 题型:
【题目】设函数f(x)=alnx-bx2(x>0),若函数f(x)在x=1处与直线y=-相切。
(1)求实数a,b的值;
(2)求函数f(x)在上的最大值。
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】(卷号)2209028400021504
(题号)2209073114537984
(题文)
已知函数.
(Ⅰ)当时,求曲线在处的切线方程;
(Ⅱ)当时,求的单调区间;
(Ⅲ)对于曲线上的不同两点、,如果存在曲线上的点,且,使得曲线在点处的切线,则称直线存在“伴随切线”. 特别地,当时,又称直线存在“中值伴随切线”.试问:在函数的图象上是否存在两点、,使得直线存在“中值伴随切线”?若存在,求出、的坐标;若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在四棱锥中,,,,,,点在线段上,且.
(Ⅰ)求证:;
(Ⅱ)求二面角的正弦值;
(Ⅲ)在线段上是否存在点,使得,若存在,求出线段的长,若不存在,说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设数列的前n项和为,对任意正整数n,皆满足(实常数).在等差数())中,,.
(1)求数列的通项公式;
(2)试判断数列能否成等比数列,并说明理由;
(3)若,,求数列的前n项和,并计算:(已知).
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数,其中为自然对数的底数.
(1)当时,求函数的单调区间;
(2)求函数在区间上的值域;
(3)若,过原点分别作曲线的切线、,且两切线的斜率互为倒数,求证:.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知过点A(0,1)且斜率为k的直线l与圆C:(x-2)2+(y-3)2=1交于M,N两点.
(1)求k的取值范围;
(2)若=12,其中O为坐标原点,求|MN|.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com