精英家教网 > 高中数学 > 题目详情
1.已知区域E={(x,y)|0≤x≤3,0≤y≤2},F={(x,y)|0≤x≤3,0≤y≤2,x≥y},若向区域E内随机投掷一点,则该点落入区域F内的概率为$\frac{2}{3}$.

分析 本问题属于几何概型,求出相应的面积,即可求出概率

解答 解:依题意可知,本问题属于几何概型,
区域E和区域F的对应图形如图所示.
其中区域E的面积为3×2=6,区域F的面积为6-$\frac{1}{2}×2×2$=4,
所以向区域E内随机投掷一点,该点落入区域F内的概率为 $\frac{4}{6}=\frac{2}{3}$.
故答案为:$\frac{2}{3}$

点评 本题考查的知识点是几何概型的意义.几何概型的概率估算公式中的“几何度量”,可以为线段长度、面积、体积等,而且这个“几何度量”只与“大小”有关,而与形状和位置无关

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

1.如图,边长为2的正方形ABCD所在平面与三角形CDE所在平面相交于CD,AE⊥平面CDE,且AE=1.
(1)求证:AB∥平面CDE;
(2)求证:DE⊥平面ABE;
(3)求三棱锥B-ADE的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.如图所示,正三角形ABC的外接圆半径为2,圆心为O,PB=PC=2,D为AP上一点,AD=2DP,点D在平面ABC内的射影为圆心O.
(Ⅰ)求证:DO∥平面PBC;
(Ⅱ)求平面CBD和平面OBD所成锐二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知M是由满足下述条件的函数构成的集合:对任意f(x)∈M,①方程f(x)-x=0有实数根;②函数f(x)的导数f′(x)满足0<f′(x)<1.
(Ⅰ)集合M中的元素f(x)具有下面的性质:若f(x)的定义域为D,则对于任意[m,n]⊆D,都存在x0∈(m,n),使得等式f(n)-f(m)=(n-m)f′(x0)成立.试用这一性质证明:方程f(x)-x=0有且只有一个实数根;
(Ⅱ)对任意f(x)∈M,且x∈(a,b),求证:对于f(x)定义域中任意的x1,x2,x3,当|x2-x1|<1,且|x3-x1|<1时,|f(x3)-f(x2)|<2.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知等比数列{an}中,a1=2,a3+2是a2和a4的等差中项.
(1)求数列{an}的通项公式;
(2)记bn=nan,求数列{bn}的前n项sn

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.已知函数f(x)=2sin2x-1,若将其图象沿x轴向右平移a个单位(a>0),所得图象关于原点对称,则实数a的最小值为$\frac{π}{4}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.已知函数y=2sin(ωx+φ)(ω>0,|φ|<$\frac{π}{2}$).
①若f(0)=1,则φ=$\frac{π}{6}$;
②若?x∈R,使f(x+2)-f(x)=4成立,则ω的最小值是$\frac{π}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.设变量x,y满足约束条件:$\left\{\begin{array}{l}{x+y≥3}\\{x-y≥-1}\\{2x-y≤3}\end{array}\right.$,则目标函数且ax+y=z的最小值为$\frac{1}{2}$时实数a的取值范围是$\left\{{-\frac{1}{4}}\right\}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的左、右焦点分别为F1、F2,|F1F2|=2$\sqrt{5}$,点P在椭圆上,tan∠PF2F1=2,且△PF1F2的面积为4.
(1)求椭圆的方程;
(2)点M是椭圆上任意一点,A1、A2分别是椭圆的左、右顶点,直线MA1,MA2与直线x=$\frac{3\sqrt{5}}{2}$分别交于E,F两点,试证:以EF为直径的圆交x轴于定点,并求该定点的坐标.

查看答案和解析>>

同步练习册答案