| A. | $\frac{1}{10}$ | B. | $\frac{{\sqrt{10}}}{10}$ | C. | $\frac{{3\sqrt{10}}}{10}$ | D. | $\frac{9}{10}$ |
分析 由约束条件作出可行域,化目标函数为直线方程的斜截式,数形结合得到最优解,联立方程组求得最优解的坐标,代入目标函数可得3a+b=1,结合a>0,b>0求得a的范围,再把(a+1)2+(b-1)2化为关于a的二次函数,利用配方法求得最小值.
解答 解:由约束条件$\left\{\begin{array}{l}x-y-2≤0\\ 5x-3y-12≥0\\ y≤3\end{array}\right.$作出可行域如图,![]()
联立$\left\{\begin{array}{l}{x-y-2=0}\\{5x-3y-12=0}\end{array}\right.$,解得A(3,1),
化z=ax+by(a>0,b>0)为y=-$\frac{a}{b}x+\frac{z}{b}$,
由图可知,当直线y=-$\frac{a}{b}x+\frac{z}{b}$过A时,直线在y轴上的截距最小,z有最小值1,
此时3a+b=1,
∵a>0,b>0,∴0$<a<\frac{1}{3}$.
则(a+1)2+(b-1)2=(a+1)2+9a2=10a2+2a+1=10$(a+\frac{1}{10})^{2}+\frac{9}{10}$.
则当a=$-\frac{1}{10}$时,(a+1)2+(b-1)2的最小值为$\frac{9}{10}$.
故选:D.
点评 本题考查简单的线性规划,考查了数学转化思想方法和数形结合的解题思想方法,是中档题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 84 | B. | 63 | C. | 42 | D. | 21 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 39+319 | B. | 310+319 | C. | 319+320 | D. | 310+320 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 钝角三角形 | B. | 锐角三角形 | C. | 直角三角形 | D. | 不确定 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com