11£®¶ÔÓÚ¶¨ÒåÓòΪDµÄº¯Êýf£¨x£©Í¬Ê±Âú×ãÌõ¼þ£º
¢Ù³£Êýa£¬bÂú×ãa£¼b£¬Çø¼ä[a£¬b]⊆D
¢Úʹf£¨x£©ÔÚ[a£¬b]ÉϵÄÖµÓòΪ[ka£¬kb]£¬£¨k¡ÊN*£©£¬ÄÇôÎÒÃǰÑf£¨x£©½Ð×ö[a£¬b]Éϵġ°k¼¶¾ØÐΡ±º¯Êý
£¨1£©É躯Êýf£¨x£©=x3[a£¬b]Éϵġ°1¼¶¾ØÐΡ±º¯Êý£¬Çó³£Êýa£¬bµÄÖµ£»
£¨2£©ÊÇ·ñ´æÔÚ³£Êýa£¬bÓëÕýÊýk£¬Ê¹º¯Êýg£¨x£©=$\frac{1}{x+2}$£¨x£¾-2£©ÔÚÇø¼ä[a£¬b]ÉϵÄÊÇ¡°k¼¶¾ØÐΡ±º¯Êý£¿Èô´æÔÚ£¬Çó³öa£¬b¼°kµÄÖµ£¬Èô²»´æÔÚ£¬ËµÃ÷ÀíÓÉ
£¨3£©Éèh£¨x£©=-2x2-xÊÇ[a£¬b]Éϵġ°3¼¶¾ØÐΡ±º¯Êý£¬Çó³ö³£Êýa£¬bµÄÖµ£®

·ÖÎö £¨1£©º¯Êýf£¨x£©=x3ÊÇ[a£¬b]Éϵġ°1¼¶¾ØÕ󡱺¯Êý£¬½áºÏº¯ÊýµÄµ¥µ÷ÐÔ½¨Á¢·½³Ì¹ØÏµ¼´¿É£®
£¨2£©¸ù¾Ýg£¨x£©µÄµ¥µ÷ÐÔ½¨Á¢·½³Ì¹ØÏµ½øÐÐÇó½â¼´¿É£®
£¨3£©½áºÏÒ»Ôª¶þ´Îº¯ÊýµÄÐÔÖÊ£¬ÌÖÂÛ¶Ô³ÆÖáµÄλÖý¨Á¢·½³Ì¹ØÏµ¼´¿É£®

½â´ð ½â£º£¨1£©Èôº¯Êýf£¨x£©=x3ÊÇ[a£¬b]Éϵġ°1¼¶¾ØÕ󡱺¯Êý£¬¼´Âú×ãÌõ¼þ¢Ù³£Êýa£¬bÂú×ãa£¼b£¬Çø¼ä[a£¬b]⊆D£¬¢Úʹf£¨x£©ÔÚ[a£¬b]ÉϵÄÖµÓòΪ[a£¬b]
¡ßº¯Êýf£¨x£©=x3ÊÇ[a£¬b]Éϵĵ¥µ÷Ôöº¯Êý
¡à$\left\{\begin{array}{l}{{a}^{3}=a}\\{{b}^{3}=b}\end{array}\right.$£¬µÃa=-1£¬b=0»òa=-1£¬b=1£¬»òa=0£¬b=1£®
£¨2£©Èôº¯Êýg£¨x£©=$\frac{1}{x+2}$£¨x£¾-2£©ÔÚÇø¼ä[a£¬b]ÉϵÄÊÇ¡°k¼¶¾ØÐΡ±º¯Êý£¬
¡ßº¯Êýg£¨x£©=$\frac{1}{x+2}$£¨x£¾-2£©ÔÚÇø¼ä[a£¬b]ÉϵÄÊǼõº¯Êý£¬
¡à$\left\{\begin{array}{l}{g£¨a£©=kb}\\{g£¨b£©=ka}\end{array}\right.$£¬¼´$\left\{\begin{array}{l}{\frac{1}{a+2}=kb}\\{\frac{1}{b+2}=ka}\end{array}\right.$£¬Á½Ê½Ïà³ýµÃ$\frac{b+2}{a+2}=\frac{b}{a}$£¬¼´ab+2a=ab+2b£¬
µÃ2a=2b£¬¼´a=b£¬Óëb£¾aì¶Ü£¬¹Ê²»´æÔÚ³£Êýa£¬bÓëÕýÊýk£¬Ê¹º¯Êýg£¨x£©=$\frac{1}{x+2}$£¨x£¾-2£©ÔÚÇø¼ä[a£¬b]ÉϵÄÊÇ¡°k¼¶¾ØÐΡ±º¯Êý£®
£¨3£©Èôh£¨x£©=-2x2-xÊÇ[a£¬b]Éϵġ°3¼¶¾ØÐΡ±º¯Êý£¬
ÔòÂú×㺯Êýh£¨x£©=-2£¨x+$\frac{1}{4}$£©2+$\frac{1}{8}$ÔÚ[a£¬b]ÉϵÄÖµÓòΪ[3a£¬3b]£¬
¢Ùµ±a£¼b¡Ü-$\frac{1}{4}$ʱ£¬h£¨x£©ÔÚ[a£¬b]Éϵ¥µ÷µÝÔö£¬ÖµÓòΪ[h£¨a£©£¬h£¨b£©]£¬¼´h£¨a£©=3a£¬h£¨b£©=3b£¬
¼´a£¬bÊÇh£¨x£©=3xµÄÁ½¸ö²»µÈʵ¸ù£¬¼´-2x2-x=3x£¬x2+2x=0£¬½âµÃx=0»òx=-2£¬
¼´a=-2£¬b=0²»Âú×ãÌõ¼þ£®
¢Úµ±-$\frac{1}{4}$¡Üa£¼bʱ£¬h£¨x£©ÔÚ[a£¬b]Éϵ¥µ÷µÝ¼õ£¬ÖµÓòΪ[h£¨b£©£¬h£¨a£©]£¬¼´h£¨a£©=3b£¬h£¨b£©=3a£¬
¼´$\left\{\begin{array}{l}{a+b=1}\\{{a}^{2}+{b}^{2}=-2}\end{array}\right.$£¬·½³Ì×éÎ޽⣮
¢Ûµ±a£¼-$\frac{1}{4}$£¼bʱ£¬µ±x=-$\frac{1}{4}$ʱ£¬º¯ÊýµÄ×î´óֵΪ$\frac{1}{8}$£¬¼´3b=$\frac{1}{8}$£¬½âµÃb=$\frac{1}{24}$£¬
h£¨$\frac{1}{24}$£©=h£¨-$\frac{13}{24}$£©£¬
¡àµ±a£¼-$\frac{13}{24}$£¬h£¨a£©=3a£¬½âµÃa=-2£¬
×ÛÉÏa=-2£¬b=$\frac{1}{24}$£®

µãÆÀ ±¾Ì⿼²éÁËж¨ÒåÐͺ¯ÊýµÄÀí½âºÍÔËÓÃÄÜÁ¦£¬º¯Êýµ¥µ÷ÐÔµÄÓ¦Óã¬×ª»¯»¯¹éµÄ˼Ïë·½·¨£®

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

1£®Çóº¯Êýf£¨x£©=3|x|µÄµ¥µ÷Çø¼ä£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

2£®²»¹²ÏßÈýµãA¡¢B¡¢P∉Æ½Ãæ¦Á£¬µãP∉Ö±ÏßAB£¬AP¡É¦Á=A1£¬BP¡É¦Á=B1£¬AB¡É¦Á=O£¬µ±µãPÔÚ¿Õ¼äÖб䶯ʱ£¬¶¨µãOÓ붯ֱÏßA1B1µÄλÖùØÏµÊÇO¡ÊA1B1£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

19£®º¯Êýf£¨x£©=ax2-2014x+2015£¨a£¾0£©£¬ÔÚÇø¼ä[t-1£¬t+1]£¨t¡ÊR£©ÉϺ¯Êýf£¨x£©µÄ×î´óֵΪM£¬×îСֵΪN£¬µ±tÈ¡ÈÎÒâʵÊýʱ£®M-NµÄ×îСֵΪ1£¬Ôòa=£¨¡¡¡¡£©
A£®1B£®2C£®3D£®4

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

6£®Èôº¯Êýf£¨x£©µÄ¶¨ÒåÓòÊÇ£¨0£¬2£©£¬Ôòf£¨3-3x£©µÄ¶¨ÒåÓòÊÇ£¨¡¡¡¡£©
A£®£¨0£¬2£©B£®£¨-2£¬0£©C£®£¨0£¬1£©D£®£¨-1£¬0£©

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

16£®ÉèM={x|0¡Üx¡Ü2}£¬N={y|0¡Üy¡Ü2}£¬¸ø³öÈçͼËùʾµÄËĸöͼÐΣº

ÆäÖÐÄܱíʾ´Ó¼¯ºÏMµ½¼¯ºÏNµÄº¯Êý¹ØÏµÊ½µÄÓУ¨¡¡¡¡£©
A£®1¸öB£®2¸öC£®3¸öD£®4¸ö

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

3£®¹ýµã£¨m£¬n£©ÇÒÓëÖ±Ïßnx-my+mn=0ƽÐеÄÖ±ÏßÒ»¶¨»¹¹ýµã£¨0£¬0£©£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

20£®Èôf£¨x£©ÊǶ¨ÒåÔÚRÉϵÄżº¯Êý£¬ÇÒÂú×ãf£¨x£©=-f£¨x+$\frac{3}{2}$£©£¬f£¨-1£©=1£¬f£¨0£©=-2£¬Ôòf£¨1£©+f£¨2£©+¡­+f£¨2008£©µÄֵΪ£¨¡¡¡¡£©
A£®-2B£®0C£®1D£®2

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

1£®º¯Êýy=$\frac{{x}^{2}+2x+6}{x-1}$£¨x£¾1£©µÄ×îСֵΪ£¨¡¡¡¡£©
A£®10B£®9C£®6D£®4

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸