分析 (1)求出函数的导数,计算f($\frac{1}{2}$),f′($\frac{1}{2}$),求出切线方程即可;
(2)令f′(x)=0,即(1-x)ln(1-x)-xlnx=0,令h(x)=(1-x)ln(1-x)-xlnx,(0<x<1),根据函数的单调性求出函数的零点即可.
解答 解:(1)f′(x)=$\frac{(1-x)ln(1-x)-xlnx}{x(1-x)}$,
故f($\frac{1}{2}$)=ln2$\frac{1}{2}$,f′($\frac{1}{2}$)=0,
故切线方程是:y=ln2$\frac{1}{2}$;
(2)由(1)得,令f′(x)=0,即(1-x)ln(1-x)-xlnx=0,
令h(x)=(1-x)ln(1-x)-xlnx,(0<x<1),
则h′(x)=lnx(1-x),h″(x)=$\frac{1-2x}{x(1-x)}$,
令h″(x)>0,解得:0<x<$\frac{1}{2}$,
令h″(x)<0,解得:x>$\frac{1}{2}$,
故h′(x)在(0,$\frac{1}{2}$)递增,在($\frac{1}{2}$,+∞)递减,
故h′(x)<h′($\frac{1}{2}$)=ln$\frac{1}{4}$<0,
故h(x)在(0,1)递减,
而h($\frac{1}{2}$)=0,
故h(x)在(0,1)的零点是x=$\frac{1}{2}$.
点评 本题考查了切线方程问题,考查函数的单调性、最值问题,考查导数的应用,是一道中档题.
科目:高中数学 来源: 题型:选择题
| A. | 充分不必要条件 | B. | 必要不充分条件 | ||
| C. | 充分必要条件 | D. | 既不充分也不必要条件 |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | -2 | B. | -2$\sqrt{2}$ | C. | 2 | D. | 2$\sqrt{2}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
| 交易量X(件) | 150 | 180 | 200 | 250 | 320 |
频率 | $\frac{1}{12}$ | $\frac{1}{6}$ | a | $\frac{1}{4}$ | $\frac{1}{6}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 7 | B. | 8 | C. | 9 | D. | 10 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com