精英家教网 > 高中数学 > 题目详情
15.已知公差不为零的等差数列{an}满足a6=14,且a1,a3,a7为等比数列{bn}的前三项.
(Ⅰ)求数列{an}、{bn}的通项公式;
(Ⅱ)设cn=an-bn,求数列{cn}的前n项和.

分析 (1)设等差数列{an}的公差为d,求出公差a1,d的值,即可得到数列{an}的通项公式,再求出公比,即可求出{bn}的通项公式
(2)根据等差数列和等比数列的前n项和公式分组求和即可

解答 解:(Ⅰ)设公差为d,由a6=14,且a1,a3,a7为等比数列{bn}的前三项,可得
$\begin{array}{l}\left\{\begin{array}{l}{a_1}+5d=14\\{({a_1}+2d)^2}={a_1}•({a_1}+6d)\end{array}\right.\end{array}$,
解得a1=4,d=2,
∴an=4+(n-1)•2=2n+2,
∴q=$\frac{{a}_{3}}{{a}_{1}}$=2,
∴bn=4•2n-1=2n+1
(Ⅱ)cn=an-bn
∴Sn=c1+c2+c3+…+cn=a1-b1+a2-b2+a3-b3+an-bn=(a1+a2+a3+…+an)-(b1+b2+b3+…+bn)=$\frac{(4+2n+n)}{2}$-$\frac{4(1-{2}^{n})}{1-2}$=n2+3n+4-2n+2

点评 本题主要考查等比数列的定义和性质,等比数列的通项公式,等差数列的通项公式,分组求和,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

5.设f(x)=(lnx)ln(1-x).
(1)求函数y=f(x)的图象在($\frac{1}{2}$,f($\frac{1}{2}$))处的切线方程;
(2)求函数y=f′(x)的零点.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.已知抛物线E的焦点为F,准线为l,过F的直线m与E交于A,B两点,C,D分别为A,B在l上的射影,M为AB的中点,若m与l不平行,则△CMD是(  )
A.等腰三角形且为锐角三角形B.等腰三角形且为钝角三角形
C.等腰直角三角形D.非等腰的直角三角形

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.在数列{an}中,a2=$\frac{2}{3}$.
(1)若数列{an}满足2an-an+1=0,求an
(2)若a4=$\frac{4}{7}$,且数列{(2n-1)an+1}是等差数列,求数列{$\frac{n}{{a}_{n}}$}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知函数f(x)=2|x+1|+|x-2|的最小值为m.
(Ⅰ)求实数m的值;
(Ⅱ)若a,b,c均为正实数,且满足a+b+c=m,求证:$\frac{{b}^{2}}{a}$+$\frac{{c}^{2}}{b}$+$\frac{{a}^{2}}{c}$≥3.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知函数f(x)=2lnx+x2-ax+2(a∈R).
(Ⅰ)讨论函数f(x)的单调性;
(Ⅱ)若存在x0∈(0,1],使得对任意的a∈[-2,0),不等式f(x0)>a2+3a+2-2mea(a+1)(其中e是自然对数的底数)都成立,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.Sn为数列{an}的前n项和,已知Sn+1=λSn+1(λ是大于0的常数),且a1=1,a3=4.
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)设bn=nan,求数列{bn}的前n项和.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.已知函数y=cosx与y=sin(2x+φ)(0≤φ≤π),它们的图象有一个横坐标为$\frac{π}{3}$的交点,则φ=(  )
A.$\frac{π}{6}$B.$\frac{π}{3}$C.$\frac{2π}{3}$D.$\frac{5π}{6}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.若实数a,b,c,d满足$\frac{2{a}^{2}-lna}{b}$=$\frac{3c-2}{d}$=1,则(a-c)2+(b-d)2的最小值为$\frac{1}{10}$.

查看答案和解析>>

同步练习册答案