精英家教网 > 高中数学 > 题目详情
4.已知函数y=cosx与y=sin(2x+φ)(0≤φ≤π),它们的图象有一个横坐标为$\frac{π}{3}$的交点,则φ=(  )
A.$\frac{π}{6}$B.$\frac{π}{3}$C.$\frac{2π}{3}$D.$\frac{5π}{6}$

分析 利用在$\frac{π}{3}$的函数值相等为$\frac{1}{2}$,得到φ的表达式,利用已知范围求角.

解答 解:$sin(\frac{2π}{3}+φ)=\frac{1}{2}$,$\frac{2π}{3}+φ=2kπ+\frac{π}{6}$或$2kπ+\frac{5π}{6}k∈Z$,
$φ=2kπ-\frac{π}{2}$或$2kπ+\frac{π}{6},k∈Z$,
又因为0≤φ≤π,所以$φ=\frac{π}{6}$;
故选A.

点评 本题考查了函数值的求法,关键是将问题转化为在$\frac{π}{3}$的函数值相等为$\frac{1}{2}$,求出范围内的角.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

14.已知函数f(x)是奇函数,且满足f(2-x)=f(x)(x∈R),当0<x≤1时,f(x)=lnx+2,则函数y=f(x)在(-2,4]上的零点个数是(  )
A.7B.8C.9D.10

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知公差不为零的等差数列{an}满足a6=14,且a1,a3,a7为等比数列{bn}的前三项.
(Ⅰ)求数列{an}、{bn}的通项公式;
(Ⅱ)设cn=an-bn,求数列{cn}的前n项和.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.智能手机功能强大,许多人喜欢用手机看电视、看电影.某同学在暑假期间开展社会实践,对[25,55]岁的人群随机抽取1000人调查是否喜欢用手机看电视、看电影,对喜欢用手机看电视、看电影的称为“手机族”,得到如下各年龄段“手机族”人数频率分布直方图:
(1)请补全频率分布直方图;
(2)从[40,50)岁年龄段的“手机族”中采用分层抽样法抽取10人参加户外低碳体验活动,并从中选取3人作为领队,记选取的3名领队中年龄在[40,45)岁的人数为X,求X的分布列和数学期望EX.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.定义min{a,b}=$\left\{\begin{array}{l}{a,a≤b}\\{b,a>b}\end{array}\right.$,已知实数x,y满足|x|≤2,|y|≤2,设z=min{x+y,2x-y},则z的取值范围为[-6,3].

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.在区间$[{0,\frac{π}{2}}]$上任选两个数x和y,则y<sinx的概率为(  )
A.$\frac{2}{π^2}$B.$1-\frac{4}{π^2}$C.$\frac{4}{π^2}$D.$1-\frac{2}{π^2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.在区间[0,1]上任选两个数x和y,则$y≥\sqrt{1-{x^2}}$的概率为(  )
A.$\frac{π}{6}$B.$\frac{π}{4}$C.$1-\frac{π}{6}$D.$1-\frac{π}{4}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.设各项均为正数的数列{an}和{bn}满足:对任意n∈N*,an,bn,an+1成等差数列,bn,an+1,bn+1成等比数列,且a1=1,b1=2,a2=3.
(Ⅰ)证明数列{$\sqrt{{b}_{n}}$}是等差数列;
(Ⅱ)求数列{$\frac{1}{{a}_{n}}$}前n项的和.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.在△ABC中,a,b,c分别为角A,B,C的对边,且满足b2+c2-a2=bc.
(1)求角A的值;
(2)若a=$\sqrt{3}$,记△ABC的周长为y,试求y的取值范围.

查看答案和解析>>

同步练习册答案