【题目】如图,四棱锥
的底面
是平行四边形,侧面
是边长为2的正三角形,
,
.
![]()
(Ⅰ)求证:平面
平面
;
(Ⅱ)设
是棱
上的点,当
平面
时,求二面角
的余弦值.
科目:高中数学 来源: 题型:
【题目】如图,在直三棱柱ABC A1B1C1中,AC=4,CB=2,AA1=2,∠ACB=60°,E、F分别是A1C1,BC的中点.
![]()
(1)证明:平面AEB⊥平面BB1C1C;
(2)证明:C1F∥平面ABE;
(3)设P是BE的中点,求三棱锥P B1C1F的体积.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知圆锥曲线
:
(
为参数)和定点
,
,
是此圆锥曲线
的左、右焦点.
(1)以原点为极点,以
轴的正半轴为极轴建立极坐标系,求直线
的极坐标方程;
(2)经过
且与直线
垂直的直线交此圆锥曲线
于
,
两点,求
的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图①所示,在Rt△ABC中,AC=6,BC=3,∠ABC=90°,CD为∠ACB的平分线,点E在线段AC上,CE=4,将△BCD沿CD折起,使得平面BCD⊥平面ACD,连接AB,BE,如图②所示,设点F是AB的中点.
(1)求证:DE⊥平面BCD;
(2)若EF∥平面BDG,其中G为AC上一点,求三棱锥B-DEG的体积.
![]()
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在三棱锥P-ABC中,D,E,F分别为PC,AC,AB的中点.已知PA⊥AC,PA=6,BC=8,DF=5.
求证:(1)直线PA∥平面DEF;
(2)平面BDE⊥平面ABC.
![]()
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】一个几何体的正视图和侧视图都是边长为1的正方形,且体积为
,则这个几何体的俯视图可能是下列图形中的________.(填入所有可能的图形前的编号)
①锐角三角形;②直角三角形;③钝角三角形;④四边形;⑤扇形;⑥圆.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】给定椭圆
,称圆
为椭圆
的“伴随圆”.已知点
是椭圆
上的点
(1)若过点
的直线
与椭圆
有且只有一个公共点,求
被椭圆
的伴随圆
所截得的弦长:
(2)
是椭圆
上的两点,设
是直线
的斜率,且满足
,试问:直线
是否过定点,如果过定点,求出定点坐标,如果不过定点,试说明理由。
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com