精英家教网 > 高中数学 > 题目详情
如图,已知离心率为
3
2
的椭圆C:
x2
a2
+
y2
b2
=1(a>b>0)
过点M(2,1),O为坐标原点,平行于OM的直线i交椭圆C于不同的两点A、B.
(1)求椭圆C的方程;
(2)记直线MB、MA与x轴的交点分别为P、Q,若MP斜率为k1,MQ斜率为k2,求k1+k2
考点:直线与圆锥曲线的综合问题
专题:计算题,圆锥曲线的定义、性质与方程
分析:(1)由给出的椭圆的离心率、椭圆过定点M(2,1)及隐含条件a2=b2+c2列方程组可求a2,b2,则椭圆方程可求;
(2)设出直线l的方程,设出A,B两点的坐标,把直线和椭圆联立后可求A,B两点的横坐标的和与积,把直线MA,MB的斜率k1、k2分别用A,B两点的坐标表示,把纵坐标转化为横坐标后,则k1+k2仅含A,B两点的横坐标的和与积,化简整理即可得到结论.
解答: 解:(1)设椭圆C的方程为:
x2
a2
+
y2
b2
=1

由题意得:
c
a
=
3
2
…①
a2=b2+c2…②
4
a2
+
1
b2
=1…③

把①代入②得:a2=4b2④.
联立③④得:a2=8,b2=2.
∴椭圆方程为
x2
8
+
y2
2
=1

(2)∵M(2,1),∴kOM=
1
2

又∵直线l∥OM,可设l:y=
1
2
x+m,将式子代入椭圆C得:x2+4(
1
2
x+m)2-8=0,
整理得:x2+2mx+2m2-4=0.
设A(x1,y1),B(x2,y2),则x1+x2=-2m,x1x2=2m2-4.
设直线MA、MB的斜率分别为k1、k2,则k1=
y1-1
x1-2
,k2=
y2-1
x2-2

事实上,k1+k2=
1
2
x1+m-1
x1-2
+
1
2
x2+m-1
x2-2

=
1
2
(x1-2)+m
x1-2
+
1
2
(x2-2)+m
x2-2
=1+m(
1
x1-2
+
1
x2-2

=1+m•
x1+x2-4
x1
x
 
2
-2(x1+x2)+4

=1+m•
-2m-4
2m2-4-2(-2m)+4

=1-
2m2+4m
2m2+4m

=0.
k1+k2的值为0.
点评:本题考查了椭圆标准方程的求法,考查了直线和圆锥曲线的位置关系,考查了数形结合的解题思想,解答此类问题的关键是,常常采用设而不求的方法,即设出直线与圆锥曲线交点的坐标,解答时不求坐标,而是运用根与系数关系求出两个点的横坐标的和与积,然后结合已知条件整体代入求解问题,此题是难题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

有以下命题:
①一个简谐运动的函数表达式为f(x)=sin(
1
2
x+
4
)
,则这个简谐运动的函数的最小正周期为4π;
②已知函数f(x)=loga(x-
87
2
)+89,(a>0且a≠1)
恒过定点(m,n),则m,n使等式m=sin21°+sin22°+sin23°+…+sin2n°成立;
③对于函数f(x)=x2+ax+b和g(x)=logax(0<a<1),有f(
x1+x2
2
)≤f(x1)+f(x2)
g(
x1+x2
2
)≥g(x1)+g(x2)
成立;
④定义:若任意x∈A,总有a-x∈A,(A≠∅),就称集合A为a的闭集.已知集合A⊆{1,2,3,4,5,6},且A为6的闭集,则这样的集合A共有7个;
其中所有正确叙述的命题序号是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

cos
π
9
•cos
9
•cos(-
23π
9
)=(  )
A、-
1
8
B、-
1
16
C、
1
16
D、
1
8

查看答案和解析>>

科目:高中数学 来源: 题型:

在对某渔业产品的质量调研中,从甲、乙两地出产的该产品中各随机抽取10件,测量该产品中某种元素的含量(单位:毫克).如图是测量数据的茎叶图:

规定:当产品中的此种元素含量≥15毫克时为优质品.
(Ⅰ)试用上述样本数据估计甲、乙两地该产品的优质品率(优质品件数/总件数);
(Ⅱ)从乙地抽出的上述10件产品中,随机抽取3件,求抽到的3件产品中优质品数ξ的分布列及数学期望E(ξ).

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,已知直线l:y=2x-4交抛物线y2=4x于A、B两点,试在抛物线AOB这段曲线上求一点P,使△ABP的面积最大,并求这个最大面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

点P(4,4),圆C:(x-1)2+y2=5与椭圆E:
x2
18
+
y2
2
=1
有一个公共点A(3,1),F1、F2分别是椭圆左、右焦点,直线PF1与圆C相切.设Q为椭圆E上的一个动点,求
AP
AQ
的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知关于x,y的方程C:x2+y2-2x-4y+m=0,m∈R.
(Ⅰ)若方程C表示圆,求m的取值范围;
(Ⅱ)若圆C与直线l:4x-3y+7=0相交于M,N两点,且|MN|=2
3
,求m的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图所示,F1、F2分别为椭圆C:
x2
a2
+
y2
b2
=1(a>b>0)的左、右两个焦点,A、B为两个顶点,已知椭圆C上的点(1,
3
2
)到F1、F2两点的距离之和为4.
(1)求椭圆C的方程和焦点坐标;
(2)过椭圆C的焦点F2作AB的平行线交椭圆于P、Q两点,求弦长|PQ|.

查看答案和解析>>

科目:高中数学 来源: 题型:

给出下列四个命题:
①命题“?x∈R,cosx>0”的否定是“?x∈R,cosx≤0”;
②a、b、c是空间中的三条直线,a∥b的充要条件是a⊥c且b⊥c;
③命题“在△ABC中,若A>B,则sinA>sinB”的逆命题为假命题;
④对任意实数x,有f(-x)=f(x),且当x>0时,f′(x)>0,则当x<0时,f′(x)<0.
其中的真命题是
 
.(写出所有真命题的编号)

查看答案和解析>>

同步练习册答案