精英家教网 > 高中数学 > 题目详情
如图所示,F1、F2分别为椭圆C:
x2
a2
+
y2
b2
=1(a>b>0)的左、右两个焦点,A、B为两个顶点,已知椭圆C上的点(1,
3
2
)到F1、F2两点的距离之和为4.
(1)求椭圆C的方程和焦点坐标;
(2)过椭圆C的焦点F2作AB的平行线交椭圆于P、Q两点,求弦长|PQ|.
考点:直线与圆锥曲线的综合问题
专题:圆锥曲线的定义、性质与方程
分析:(1)利用椭圆的定义求出a,点的坐标代入椭圆方程,求出b,即可求椭圆C的方程和焦点坐标;
(2)通过椭圆C的焦点F2,以及AB的平行线求出直线的斜率,设出PQ的方程,与椭圆联立通过韦达定理利用写出公式,求弦长|PQ|.
解答: 解:(1)由题设知:2a=4,即a=2,
将点(1,
3
2
)代入椭圆方程得 
1
22
+
(
3
2
)2
b2
=1

解得b2=3
∴c2=a2-b2=4-3=1,故椭圆方程为
x2
4
+
y2
3
=1

焦点F1、F2的坐标分别为(-1,0)和(1,0)
(2)由(Ⅰ)知A(-2,0),B(0,
3
),∴kPQ=kAB=
3
2

∴PQ所在直线方程为y=
3
2
(x-1),
由 
y=
3
2
(x-1)
x2
4
+
y2
3
=1
  得 2x2-2x-3=0,
设P (x1,y1),Q (x2,y2),则x1+x2=1,x1-x2=-
3
2

弦长|PQ|=
1+k2
(x1+x2)2-4x1x2
=
7
2
7
=
7
2
点评:本题考查椭圆的标准方程的求法,直线与椭圆的位置关系的应用,弦长公式的应用,考查转化思想以及计算能力.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设a=log210,b=log315,c=log735,则(  )
A、c>a>b
B、b>c>a
C、b>a>c
D、a>b>c

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,已知离心率为
3
2
的椭圆C:
x2
a2
+
y2
b2
=1(a>b>0)
过点M(2,1),O为坐标原点,平行于OM的直线i交椭圆C于不同的两点A、B.
(1)求椭圆C的方程;
(2)记直线MB、MA与x轴的交点分别为P、Q,若MP斜率为k1,MQ斜率为k2,求k1+k2

查看答案和解析>>

科目:高中数学 来源: 题型:

设椭圆C:
x2
a2
+
y2
b2
=1
(a>b>0)的一个顶点为B(0,
3
)
,F1,F2分别是椭圆的左、右焦点,离心率e=
1
2
,直线l:y=x+1与椭圆交于M、N两点.
(1)求椭圆C的方程;
(2)求弦MN的长.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知椭圆C:
x2
a2
+
y2
b2
=1
(a>b>0)离心率为
2
2
,且椭圆的长轴比焦距长2
2
-2

(1)求椭圆C的方程;
(2)过点M(0,-
1
3
)的动直线l交椭圆C于A、B两点,试问:在坐标平面上是否存在一个定点T,使得无论l如何转动,以AB为直径的圆恒过定点T?若存在,求出点T的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,已知焦点在x轴上的椭圆
x2
8
+
y2
b2
=1(b>0)有一个内含圆x2+y2=
8
3
,该圆的垂直于x轴的切线交椭圆于点M,N,且
OM
ON
(O为原点).
(1)求b的值;
(2)设内含圆的任意切线l交椭圆于点A、B.求证:
OA
OB
,并求|AB|的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知:定点A(-1,0),点B是⊙F:(x-1)2+y2=8(F为圆心)上的动点,线段AB的垂直平分线交BF于点G,记点G的轨迹为曲线E.
(1)求曲线E的方程;
(2)设过点A的直线l与曲线E交于P、Q两点.在x轴上是否存在一点M,使得
MP
MQ
恒为常数?若存在,求出M点的坐标和这个常数;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知抛物线C:y2=x与直线l:y=kx+
3
4
,试问C上能否存在关于直线l对称的两点?若存在,求出实数k的取值范围;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

下列说法中:
①若f(x)=ax2+(2a+b)x+2(其中x∈[2a-1,a+4])是偶函数,则实数b=2;
②f(x)=
2013-x2
+
x2-2013
既是奇函数又是偶函数;
③已知f(x)是定义在R上的奇函数,若当x∈[0,+∞)时,f(x)=x(1+x),则当x∈R时,f(x)=x(1+|x|);
④已知f(x)是定义在R上的不恒为零的函数,且对任意的x,y∈R都满足f(x•y)=x•f(y)+y•f(x),则f(x)是奇函数.其中正确说法的序号是
 

查看答案和解析>>

同步练习册答案