精英家教网 > 高中数学 > 题目详情
16.在△ABC中,已知BC=1,B=$\frac{π}{3}$,△ABC的面积为$\sqrt{3}$,则AC的长为(  )
A.3B.$\sqrt{13}$C.$\sqrt{21}$D.$\sqrt{57}$

分析 由已知利用三角形面积公式可求AB的值,进而利用余弦定理可求AC的值.

解答 解:∵BC=1,B=$\frac{π}{3}$,
△ABC的面积为$\sqrt{3}$=$\frac{1}{2}$BC•AB•sinB=$\frac{1}{2}×AB×1×\frac{\sqrt{3}}{2}$,
∴AB=4,
∴AC=$\sqrt{A{B}^{2}+B{C}^{2}-2AB•BC•cosB}$=$\sqrt{16+1-2×4×1×\frac{1}{2}}$=$\sqrt{13}$.
故选:B.

点评 本题主要考查了三角形面积公式,余弦定理在解三角形中的应用,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

6.若$\int_0^{\frac{π}{4}}{cosxdx=\int_0^a{{x^2}dx}}$,则a3=$\frac{3\sqrt{2}}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知函数f(x)=x3+bx2+cx的导函数图象关于直线x=2对称
(1)求b值;
(2)若f(x)在x=t处取得极小值,记此极小值为g(t),求g(t)的定义域.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.三棱锥P-ABC的四个顶点均在半径为5的球面上,且△ABC是斜边长为8的等腰直角三角形,则三棱锥P-ABC的体积的最大值为(  )
A.64B.128C.$\frac{64}{3}$D.$\frac{128}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.若数列{an},{bn}的通项公式分别为an=(-1)n+2016•a,bn=2+$\frac{{{{(-1)}^{n+2017}}}}{n}$,且an<bn,对任意n∈N*恒成立,则实数a的取值范围是(  )
A.$[-1,\frac{1}{2})$B.[-1,1)C.[-2,1)D.$[-2,\frac{3}{2})$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.对任意的x>0,总有f(x)=a-x-|lgx|≤0,则a的取值范围是(  )
A.(-∞,lge-lg(lge)]B.(-∞,1]C.[1,lge-lg(lge)]D.[lge-lg(lge),+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.执行如图所示的程序框图,如果输入n=3,则输出的S值为(  )
A.$\frac{2}{5}$B.$\frac{4}{5}$C.$\frac{3}{7}$D.$\frac{6}{7}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.一个几何体的三视图及尺寸如图所示,则该几何体的体积为(  )
A.24B.30C.48D.72

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.已知$\overrightarrow a,\overrightarrow b$均为单位向量,它们的夹角为60°,那么$|{3\overrightarrow a+\overrightarrow b}|$等于(  )
A.4B.$\sqrt{13}$C.$\sqrt{10}$D.$\sqrt{7}$

查看答案和解析>>

同步练习册答案