精英家教网 > 高中数学 > 题目详情

【题目】如图1,四边形是边长为2的菱形,的中点,以为折痕将折起到的位置,使得平面平面,如图2.

1)证明:平面平面

2)求二面角的余弦值.

【答案】1)证明见解析(2

【解析】

1)依题意可得,由面面垂直的性质可得平面,从而得到,再证,即可得到平面,从而得证;

2)以为原点,分别以的方向为轴,轴,轴的正方向,建立空间直角坐标系,利用空间向量求二面角的余弦值;

解:(1)依题意知,因为,所以

当平面平面时,

平面平面平面

所以平面

因为平面,所以

由已知,是等边三角形,且的中点,

所以,所以

平面平面

所以平面

平面,所以平面平面.

2)以为原点,分别以的方向为轴,轴,轴的正方向,建立空间直角坐标系

设平面的一个法向量,平面的一个法向量

;令,解得

所以

;令,解得

所以

.

易得所求二面角为锐角,所以二面角的余弦值为.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】

(Ⅰ)如果存在x1x2∈[0,2],使得g(x1)-g(x2)≥M成立,求满足上述条件的最大整数M

(Ⅱ)如果对于任意的都有f(s)≥g(t)成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为了迎接2019年全国文明城市评比,某市文明办对市民进行了一次文明创建知识的网络问卷调查.每一位市民有且仅有一次参加机会,通过随机抽样,得到参加问卷调查的1000人的得分(满分:100分)数据,统计结果如下表所示:

组别

频数

25

150

200

250

225

100

50

(1)由频数分布表可以认为,此次问卷调查的得分服从正态分布近似为这1000人得分的平均值(同一组数据用该组区间的中点值作为代表),请利用正态分布的知识求

(2)在(1)的条件下,文明办为此次参加问卷调查的市民制定如下奖励方案:

(i)得分不低于的可以获赠2次随机话费,得分低于的可以获赠1次随机话费;

(ii)每次获赠的随机话费和对应的概率为:

获赠的随机话费(单位:元)

20

40

概率

现市民小王要参加此次问卷调查,记(单位:元)为该市民参加问卷调查获赠的话费,求的分布列及数学期望.

附:①

②若,则.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】近年来,随着互联网技术的快速发展,共享经济覆盖的范围迅速扩张,继共享单车、共享汽车之后,共享房屋以“民宿”、“农家乐”等形式开始在很多平台上线.某创业者计划在某景区附近租赁一套农房发展成特色“农家乐”,为了确定未来发展方向,此创业者对该景区附近六家“农家乐”跟踪调查了天.得到的统计数据如下表,为收费标准(单位:元/日),为入住天数(单位:),以频率作为各自的“入住率”,收费标准与“入住率”的散点图如图

x

50

100

150

200

300

400

t

90

65

45

30

20

20

(1)若从以上六家“农家乐”中随机抽取两家深入调查,记为“入住率”超过的农家乐的个数,求的概率分布列;

(2)令,由散点图判断哪个更合适于此模型(给出判断即可,不必说明理由)?并根据你的判断结果求回归方程.(结果保留一位小数)

(3)若一年按天计算,试估计收费标准为多少时,年销售额最大?(年销售额入住率收费标准

参考数据:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为了研究广大市民对共享单车的使用情况,某公司在我市随机抽取了100名用户进行调查,得到如下数据:

每周使用次数

1

2

3

4

5

6次及以上

4

3

3

7

8

30

6

5

4

4

6

20

合计

10

8

7

11

14

50

认为每周使用超过3次的用户为“喜欢骑共享单车”.

(1)分别估算男、女“喜欢骑共享单车”的概率;

(2)请完成下面的2×2列联表,并判断能否有95%把握,认为是否“喜欢骑共享单车”与性别有关.

不喜欢骑共享单车

喜欢骑共享单车

合计

合计

附表及公式:,其中.

0.15

010

0.05

0.025

0.010

0.005

0.001

2.072

2.706

3.841

5.024

6.635

7.879

10.828

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆离心率为,且与双曲线有相同焦点.

1)求椭圆标准方程;

2)过点的直线与椭圆交于两点,原点在以为直径的圆上,求直线的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的离心率为,点分别为椭圆的右顶点,上顶点和右焦点,且

1)求椭圆的方程;

2是椭圆上的两个动点,若直线与直线的斜率之和为,证明,直线恒过定点.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】第十三届全国人大第二次会议于201935日在北京开幕.为广泛了解民意,某人大代表利用网站进行民意调查.数据调查显示,民生问题是百姓最为关心的热点,参与调查者中关注此问题的约占.现从参与调查者中随机选出200人,并将这200人按年龄分组,第1,第2,第3,第4,第5,得到的频率分布直方图如图所示.

(1)求

(2)现在要从年龄较小的第1组和第2组中用分层抽样的方法抽取5人,并再从这5人中随机抽取2人接受现场访谈,求这两人恰好属于不同组别的概率;

(3)把年龄在第123组的居民称为青少年组,年龄在第45组的居民称为中老年组,若选出的200人中不关注民生问题的中老年人有10人,问是否有的把握认为是否关注民生与年龄有关?

附:

0.150

0.100

0.050

0.025

0.010

0.005

0.001

2.072

2.706

3.841

5.024

6.635

7.879

10.828

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥中,底面为直角梯形平面是棱上的一点.

1)证明:平面平面

2)若的中点,,且二面角的正弦值为,求的值.

查看答案和解析>>

同步练习册答案