精英家教网 > 高中数学 > 题目详情

【题目】为了研究广大市民对共享单车的使用情况,某公司在我市随机抽取了100名用户进行调查,得到如下数据:

每周使用次数

1

2

3

4

5

6次及以上

4

3

3

7

8

30

6

5

4

4

6

20

合计

10

8

7

11

14

50

认为每周使用超过3次的用户为“喜欢骑共享单车”.

(1)分别估算男、女“喜欢骑共享单车”的概率;

(2)请完成下面的2×2列联表,并判断能否有95%把握,认为是否“喜欢骑共享单车”与性别有关.

不喜欢骑共享单车

喜欢骑共享单车

合计

合计

附表及公式:,其中.

0.15

010

0.05

0.025

0.010

0.005

0.001

2.072

2.706

3.841

5.024

6.635

7.879

10.828

【答案】(1)男用户中“喜欢骑共享单车”的概率的估计值为,女用户中“喜欢骑共享单车”的概率的估计值为(2)填表见解析,没有95%的把握认为是否“喜欢骑共享单车”与性别有关

【解析】

(1)利用古典概型的概率估算男、女“喜欢骑共享单车”的概率;(2)先完成列联表,再利用独立性检验判断能否有95%把握,认为是否“喜欢骑共享单车”与性别有关.

:(1)由调查数据可知,男用户中“喜欢骑共享单车”的比率为

因此男用户中“喜欢骑共享单车”的概率的估计值为.

女用户中“喜欢骑共享单车”的比率为

因此女用户中“喜欢骑共享单车”的概率的估计值为.

2)由图中表格可得列联表如下:

不喜欢骑共享单车

喜欢骑共享单车

合计

10

45

55

15

30

45

合计

25

75

100

列联表代入公式计算得:

所以没有95%的把握认为是否“喜欢骑共享单车”与性别有关.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】函数(其中为自然对数的底数).

,使得直线为函数的一条切线;

②对,函数的导函数无零点;

③对,函数总存在零点;

则上述结论正确的是______.(写出所有正确的结论的序号)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】大气污染是我国目前最突出的环境问题之一,其中工厂废气是大气污染的重大污染源之一。工厂废气未经净化处理排放至空气中,除了对空气质量造成严重破坏,还会对人体的健康造成重大威胁。长期生活在污染的空气中,生活质量及身体健康将急剧下降。某工厂因为污染问题需改进技术,2019年初购进一台环保新机器投入生产,机器的成本价为36万元,第年该机器包括维修费和机器护理费用在内,每年另需投人费用万元,购进该机器后每年盈利20万元.

(1)问该机器投入生产第几年,工厂开始盈利(即总收入大于所有投人的费用)?

2)由于机器使用年限越大维修等费用越高,所以工厂决定当年平均利润最大时将该机器以5万元低价处理,问使用该机器几年后工厂年平均利润最大?此时工厂获得的总利润为多少?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数是定义在上的奇函数,当时,,则函数上的所有零点之和为(

A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知点是圆上的一动点,点,点在线段上,且满足.

(1)求点的轨迹的方程;

(2)设曲线轴的正半轴,轴的正半轴的交点分别为点,斜率为的动直线交曲线两点,其中点在第一象限,求四边形面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图1,四边形是边长为2的菱形,的中点,以为折痕将折起到的位置,使得平面平面,如图2.

1)证明:平面平面

2)求二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知直线与椭圆相切于第一象限的点,且直线轴,轴分别交于点,当为坐标原点)的面积最小时,为椭圆的两个焦点),则此时的平分线的长度为(

A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的离心率为,椭圆的长轴长为4.

1)求椭圆的方程;

2)已知直线与椭圆交于两点,是否存在实数使得以线段为直径的圆恰好经过坐标原点?若存在,求出的值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知抛物线Cy22pxp0)的准线方程为x=﹣1

1)求抛物线C的方程;

2)过抛物线C的焦点作直线l,交抛物线CAB两点,若线段AB中点的横坐标为6,求|AB|

查看答案和解析>>

同步练习册答案