【题目】已知椭圆的离心率为,点,,分别为椭圆的右顶点,上顶点和右焦点,且.
(1)求椭圆的方程;
(2),是椭圆上的两个动点,若直线与直线的斜率之和为,证明,直线恒过定点.
科目:高中数学 来源: 题型:
【题目】已知平面四边形中,,,再将沿着翻折成三棱锥的过程中,直线与平面所成角均小于直线与平面所成角,设二面角,的大小分别为,则( )
A.B.C.存在D.存在
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知直线与椭圆相切于第一象限的点,且直线与轴,轴分别交于点,,当(为坐标原点)的面积最小时,(,为椭圆的两个焦点),则此时中的平分线的长度为( )
A.B.C.D.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】方程x2+x-1=0的解可视为函数y=x+的图象与函数y=的图象交点的横坐标,若x4+ax-4=0的各个实根x1,x2,…,xk(k≤4)所对应的点(xi ,)(i=1,2,…,k)均在直线y=x的同侧,则实数a的取值范围是 .
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆的离心率为,椭圆的长轴长为4.
(1)求椭圆的方程;
(2)已知直线与椭圆交于两点,是否存在实数使得以线段为直径的圆恰好经过坐标原点?若存在,求出的值;若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知点是椭圆的左、右焦点,点是该椭圆上一点,若当时,面积达到最大,最大值为.
(1)求椭圆的标准方程;
(2)设为坐标原点,是否存在过左焦点的直线,与椭圆交于两点,使得的面积为?若存在,求出直线的方程;若不存在,说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某少儿游泳队需对队员进行限时的仰卧起坐达标测试.已知队员的测试分数与仰卧起坐
个数之间的关系如下:;测试规则:每位队员最多进行三组测试,每组限时1分钟,当一组测完,测试成绩达到60分或以上时,就以此组测试成绩作为该队员的成绩,无需再进行后续的测试,最多进行三组;根据以往的训练统计,队员“喵儿”在一分钟内限时测试的频率分布直方图如下:
(1)计算值;
(2)以此样本的频率作为概率,求
①在本次达标测试中,“喵儿”得分等于的概率;
②“喵儿”在本次达标测试中可能得分的分布列及数学期望.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com