精英家教网 > 高中数学 > 题目详情

在平面直角坐标系xOy中,已知A(3,1),C(1,0).

(1)求以点C为圆心,且经过点A的圆C的标准方程;

(2)若直线l的方程为x﹣2y+9=0,判断直线l与(1)中圆C的位置关系,并说明理由.

考点:

直线与圆的位置关系;圆的标准方程.

专题:

直线与圆.

分析:

(1)因为圆C的圆心为C(1,0),可设圆C的标准方程为(x﹣1)2+y2=r2.把点A(3,1)代入圆C的方程求得r2=5,从而求得圆C的标准方程.

(2)由于圆心C到直线l的距离为,大于半径,可得直线l与圆C相离.

解答:

解:(1)因为圆C的圆心为C(1,0),可设圆C的标准方程为(x﹣1)2+y2=r2

因为点A(3,1)在圆C上,所以(3﹣1)2+12=r2,即r2=5.

所以圆C的标准方程为(x﹣1)2+y2=5.

(2)由于圆心C到直线l的距离为

因为,即d>r,所以直线l与圆C相离.

点评:

本小题主要考查圆的标准方程、直线与圆的位置关系等基础知识,点到直线的距离公式的应用,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

在平面直角坐标系xoy中,已知圆心在直线y=x+4上,半径为2
2
的圆C经过坐标原点O,椭圆
x2
a2
+
y2
9
=1(a>0)
与圆C的一个交点到椭圆两焦点的距离之和为10.
(1)求圆C的方程;
(2)若F为椭圆的右焦点,点P在圆C上,且满足PF=4,求点P的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在平面直角坐标系xOy中,锐角α和钝角β的终边分别与单位圆交于A,B两点.若点A的横坐标是
3
5
,点B的纵坐标是
12
13
,则sin(α+β)的值是
16
65
16
65

查看答案和解析>>

科目:高中数学 来源: 题型:

在平面直角坐标系xOy中,若焦点在x轴的椭圆
x2
m
+
y2
3
=1
的离心率为
1
2
,则m的值为
4
4

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•泰州三模)选修4-4:坐标系与参数方程
在平面直角坐标系xOy中,已知A(0,1),B(0,-1),C(t,0),D(
3t
,0)
,其中t≠0.设直线AC与BD的交点为P,求动点P的轨迹的参数方程(以t为参数)及普通方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•东莞一模)在平面直角坐标系xOy中,已知椭圆C:
x2
a2
+
y2
b2
=1(a>b>0)
的左焦点为F1(-1,0),且椭圆C的离心率e=
1
2

(1)求椭圆C的方程;
(2)设椭圆C的上下顶点分别为A1,A2,Q是椭圆C上异于A1,A2的任一点,直线QA1,QA2分别交x轴于点S,T,证明:|OS|•|OT|为定值,并求出该定值;
(3)在椭圆C上,是否存在点M(m,n),使得直线l:mx+ny=2与圆O:x2+y2=
16
7
相交于不同的两点A、B,且△OAB的面积最大?若存在,求出点M的坐标及对应的△OAB的面积;若不存在,请说明理由.

查看答案和解析>>

同步练习册答案