19£®ÒÑÖªÅ×ÎïÏßC1£ºx2=4yµÄ½¹µãFÒ²ÊÇÍÖÔ²C2£º$\frac{{y}^{2}}{{a}^{2}}$+$\frac{{x}^{2}}{{b}^{2}}$=1£¨a£¾b£¾0£©µÄÒ»¸ö½¹µã£¬C1ÓëC2µÄ¹«¹²Ïҵij¤Îª2$\sqrt{6}$£¬¹ýµãFµÄÖ±ÏßlÓëC1ÏཻÓÚA£¬BÁ½µã£¬ÓëC2ÏཻÓÚC£¬DÁ½µã£¬ÇÒ$\overrightarrow{AC}$Óë$\overrightarrow{BD}$ͬÏò£®
£¨¢ñ£©ÇóC2µÄ·½³Ì£»
£¨¢ò£©Èô|AC|=|BD|£¬ÇóÖ±ÏßlµÄбÂÊ£®

·ÖÎö £¨¢ñ£©Í¨¹ýC1·½³Ì¿ÉÖªa2-b2=1£¬Í¨¹ýC1ÓëC2µÄ¹«¹²Ïҵij¤Îª2$\sqrt{6}$ÇÒC1ÓëC2µÄͼÏó¶¼¹ØÓÚyÖá¶Ô³Æ¿ÉµÃ$\frac{9}{4{a}^{2}}+\frac{6}{{b}^{2}}=1$£¬¼ÆËã¼´µÃ½áÂÛ£»
£¨¢ò£©ÉèA£¨x1£¬y1£©£¬B£¨x2£¬y2£©£¬C£¨x3£¬y3£©£¬D£¨x4£¬y4£©£¬Í¨¹ý$\overrightarrow{AC}$=$\overrightarrow{BD}$¿ÉµÃ£¨x1+x2£©2-4x1x2=£¨x3+x4£©2-4x3x4£¬ÉèÖ±Ïßl·½³ÌΪy=kx+1£¬·Ö±ðÁªÁ¢Ö±ÏßÓëÅ×ÎïÏß¡¢Ö±ÏßÓëÍÖÔ²·½³Ì£¬ÀûÓÃΤ´ï¶¨Àí¼ÆËã¼´¿É£®

½â´ð ½â£º£¨¢ñ£©ÓÉC1·½³Ì¿ÉÖªF£¨0£¬1£©£¬
¡ßFÒ²ÊÇÍÖÔ²C2µÄÒ»¸ö½¹µã£¬¡àa2-b2=1£¬
ÓÖ¡ßC1ÓëC2µÄ¹«¹²Ïҵij¤Îª2$\sqrt{6}$£¬C1ÓëC2µÄͼÏó¶¼¹ØÓÚyÖá¶Ô³Æ£¬
¡àÒ×µÃC1ÓëC2µÄ¹«¹²µãµÄ×ø±êΪ£¨¡À$\sqrt{6}$£¬$\frac{3}{2}$£©£¬
¡à$\frac{9}{4{a}^{2}}+\frac{6}{{b}^{2}}=1$£¬
ÓÖ¡ßa2-b2=1£¬
¡àa2=9£¬b2=8£¬
¡àC2µÄ·½³ÌΪ$\frac{{y}^{2}}{9}$+$\frac{{x}^{2}}{8}$=1£»
£¨¢ò£©Èçͼ£¬ÉèA£¨x1£¬y1£©£¬B£¨x2£¬y2£©£¬C£¨x3£¬y3£©£¬D£¨x4£¬y4£©£¬
¡ß$\overrightarrow{AC}$Óë$\overrightarrow{BD}$ͬÏò£¬ÇÒ|AC|=|BD|£¬
¡à$\overrightarrow{AB}$=$\overrightarrow{CD}$£¬¡àx1-x2=x3-x4£¬
¡à£¨x1+x2£©2-4x1x2=£¨x3+x4£©2-4x3x4£¬

ÉèÖ±ÏßlµÄбÂÊΪk£¬Ôòl·½³Ì£ºy=kx+1£¬
ÓÉ$\left\{\begin{array}{l}{y=kx+1}\\{{x}^{2}=4y}\end{array}\right.$£¬¿ÉµÃx2-4kx-4=0£¬
ÓÉΤ´ï¶¨Àí¿ÉµÃx1+x2=4k£¬x1x2=-4£¬
ÓÉ$\left\{\begin{array}{l}{y=kx+1}\\{\frac{{y}^{2}}{9}+\frac{{x}^{2}}{8}=1}\end{array}\right.$£¬µÃ£¨9+8k2£©x2+16kx-64=0£¬
ÓÉΤ´ï¶¨Àí¿ÉµÃx3+x4=-$\frac{16k}{9+8{k}^{2}}$£¬x3x4=-$\frac{64}{9+8{k}^{2}}$£¬
Ó֡ߣ¨x1+x2£©2-4x1x2=£¨x3+x4£©2-4x3x4£¬
¡à16£¨k2+1£©=$\frac{1{6}^{2}{k}^{2}}{£¨9+8{k}^{2}£©^{2}}$+$\frac{4¡Á64}{9+8{k}^{2}}$£¬
»¯¼òµÃ16£¨k2+1£©=$\frac{1{6}^{2}¡Á9£¨{k}^{2}+1£©}{£¨9+8{k}^{2}£©^{2}}$£¬
¡à£¨9+8k2£©2=16¡Á9£¬½âµÃk=¡À$\frac{\sqrt{6}}{4}$£¬
¼´Ö±ÏßlµÄбÂÊΪ¡À$\frac{\sqrt{6}}{4}$£®

µãÆÀ ±¾ÌâÊÇÒ»µÀÖ±ÏßÓëÔ²×¶ÇúÏßµÄ×ÛºÏÌ⣬¿¼²éÇóÍÖÔ²·½³ÌÒÔ¼°Ö±ÏßµÄбÂÊ£¬Éæ¼°µ½Î¤´ï¶¨ÀíµÈ֪ʶ£¬¿¼²é¼ÆËãÄÜÁ¦£¬×¢Òâ½âÌâ·½·¨µÄ»ýÀÛ£¬ÊôÓÚÖеµÌ⣮

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

9£®É躯Êýf£¨x£©=$\left\{\begin{array}{l}{3x-b£¬x£¼1}\\{{2}^{x}£¬x¡Ý1}\end{array}\right.$£¬Èôf£¨f£¨$\frac{5}{6}$£©£©=4£¬Ôòb=£¨¡¡¡¡£©
A£®1B£®$\frac{7}{8}$C£®$\frac{3}{4}$D£®$\frac{1}{2}$

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

10£®Éè{an}ÊǵȲîÊýÁУ¬ÏÂÁнáÂÛÖÐÕýÈ·µÄÊÇ£¨¡¡¡¡£©
A£®Èôa1+a2£¾0£¬Ôòa2+a3£¾0B£®Èôa1+a3£¼0£¬Ôòa1+a2£¼0
C£®Èô0£¼a1£¼a2£¬Ôòa2$£¾\sqrt{{a}_{1}{a}_{3}}$D£®Èôa1£¼0£¬Ôò£¨a2-a1£©£¨a2-a3£©£¾0

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

7£®Ä³Á¾Æû³µÃ¿´Î¼ÓÓͶ¼°ÑÓÍÏä¼ÓÂú£¬Ï±í¼Ç¼Á˸óµÏàÁÚÁ½´Î¼ÓÓÍʱµÄÇé¿ö
¼ÓÓÍʱ¼ä¼ÓÓÍÁ¿£¨Éý£©¼ÓÓÍʱµÄÀÛ¼ÆÀï³Ì£¨Ç§Ã×£©
2015Äê5ÔÂ1ÈÕ1235000
2015Äê5ÔÂ15ÈÕ4835600
×¢£º¡°ÀÛ¼ÆÀï³Ì¡±Ö¸Æû³µ´Ó³ö³§¿ªÊ¼ÀÛ¼ÆÐÐÊ»µÄ·³Ì£¬ÔÚÕâ¶Îʱ¼äÄÚ£¬¸Ã³µÃ¿100ǧÃׯ½¾ùºÄÓÍÁ¿Îª £¨¡¡¡¡£©
A£®6ÉýB£®8ÉýC£®10ÉýD£®12Éý

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

14£®Èô±äÁ¿x£¬yÂú×ãÔ¼ÊøÌõ¼þ$\left\{\begin{array}{l}{x+y¡Ý1}\\{y-x¡Ü1}\\{x¡Ü1}\end{array}\right.$£¬Ôòz=2x-yµÄ×îСֵΪ£¨¡¡¡¡£©
A£®-1B£®0C£®1D£®2

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

4£®ÉèÏòÁ¿$\overrightarrow{a}$£¬$\overrightarrow{b}$²»Æ½ÐУ¬ÏòÁ¿¦Ë$\overrightarrow{a}$+$\overrightarrow{b}$Óë$\overrightarrow{a}$+2$\overrightarrow{b}$ƽÐУ¬ÔòʵÊý¦Ë=$\frac{1}{2}$£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

11£®º¯Êýf£¨x£©=ax3+bx2+cx+dµÄͼÏóÈçͼËùʾ£¬ÔòÏÂÁнáÂÛ³ÉÁ¢µÄÊÇ£¨¡¡¡¡£©
A£®a£¾0£¬b£¼0£¬c£¾0£¬d£¾0B£®a£¾0£¬b£¼0£¬c£¼0£¬d£¾0C£®a£¼0£¬b£¼0£¬c£¼0£¬d£¾0D£®a£¾0£¬b£¾0£¬c£¾0£¬d£¼0

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

8£®ÒÑÖªÖ±Ïßl£º$\left\{\begin{array}{l}{x=5+\frac{\sqrt{3}}{2}t}\\{y=\sqrt{3}+\frac{1}{2}t}\end{array}\right.$£¨tΪ²ÎÊý£©£®ÒÔ×ø±êÔ­µãΪ¼«µã£¬xÖáµÄÕý°ëÖáΪ¼«ÖὨÁ¢¼«×ø±êϵ£¬ÇúÏßCµÄ×ø±ê·½³ÌΪ¦Ñ=2cos¦È£®
£¨1£©½«ÇúÏßCµÄ¼«×ø±ê·½³Ì»¯ÎªÖ±×ø±ê·½³Ì£»
£¨2£©ÉèµãMµÄÖ±½Ç×ø±êΪ£¨5£¬$\sqrt{3}$£©£¬Ö±ÏßlÓëÇúÏßCµÄ½»µãΪA£¬B£¬Çó|MA|•|MB|µÄÖµ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

9£®ÉèAÊÇÓÉÓÐÏÞ¸öÕýÕûÊý×é³ÉµÄ¼¯ºÏ£¬Èô´æÔÚÁ½¸ö¼¯ºÏB£¬CÂú×㣺
¢ÙB¡ÉC=∅£»
¢ÚB¡ÈC=A£»
¢ÛBµÄÔªËØÖ®ºÍµÈÓÚCµÄÔªËØÖ®ºÍ£®
Ôò³Æ¼¯ºÏA¡°¿É¾ù·Ö¡±£¬·ñÔò³ÆA¡°²»¿É¾ù·Ö¡±£®
£¨¢ñ£©Åжϼ¯ºÏM={1£¬3£¬9£¬27£¬¡­£¬3n}£¨n¡ÊN*£©ÊÇ·ñ¡°¿É¾ù·Ö¡±£¬²¢ËµÃ÷ÀíÓÉ£»
£¨¢ò£©ÇóÖ¤£º¼¯ºÏA={2015+1£¬2015+2£¬¡­£¬2015+93}¡°¿É¾ù·Ö¡±£»
£¨¢ó£©Çó³öËùÓеÄÕýÕûÕûk£¬Ê¹µÃA={2015+1£¬2015+2£¬¡­£¬2015+k}¡°¿É¾ù·Ö¡±£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸