·ÖÎö £¨¢ñ£©Í¨¹ýC1·½³Ì¿ÉÖªa2-b2=1£¬Í¨¹ýC1ÓëC2µÄ¹«¹²Ïҵij¤Îª2$\sqrt{6}$ÇÒC1ÓëC2µÄͼÏó¶¼¹ØÓÚyÖá¶Ô³Æ¿ÉµÃ$\frac{9}{4{a}^{2}}+\frac{6}{{b}^{2}}=1$£¬¼ÆËã¼´µÃ½áÂÛ£»
£¨¢ò£©ÉèA£¨x1£¬y1£©£¬B£¨x2£¬y2£©£¬C£¨x3£¬y3£©£¬D£¨x4£¬y4£©£¬Í¨¹ý$\overrightarrow{AC}$=$\overrightarrow{BD}$¿ÉµÃ£¨x1+x2£©2-4x1x2=£¨x3+x4£©2-4x3x4£¬ÉèÖ±Ïßl·½³ÌΪy=kx+1£¬·Ö±ðÁªÁ¢Ö±ÏßÓëÅ×ÎïÏß¡¢Ö±ÏßÓëÍÖÔ²·½³Ì£¬ÀûÓÃΤ´ï¶¨Àí¼ÆËã¼´¿É£®
½â´ð ½â£º£¨¢ñ£©ÓÉC1·½³Ì¿ÉÖªF£¨0£¬1£©£¬
¡ßFÒ²ÊÇÍÖÔ²C2µÄÒ»¸ö½¹µã£¬¡àa2-b2=1£¬
ÓÖ¡ßC1ÓëC2µÄ¹«¹²Ïҵij¤Îª2$\sqrt{6}$£¬C1ÓëC2µÄͼÏó¶¼¹ØÓÚyÖá¶Ô³Æ£¬
¡àÒ×µÃC1ÓëC2µÄ¹«¹²µãµÄ×ø±êΪ£¨¡À$\sqrt{6}$£¬$\frac{3}{2}$£©£¬
¡à$\frac{9}{4{a}^{2}}+\frac{6}{{b}^{2}}=1$£¬
ÓÖ¡ßa2-b2=1£¬
¡àa2=9£¬b2=8£¬
¡àC2µÄ·½³ÌΪ$\frac{{y}^{2}}{9}$+$\frac{{x}^{2}}{8}$=1£»
£¨¢ò£©Èçͼ£¬ÉèA£¨x1£¬y1£©£¬B£¨x2£¬y2£©£¬C£¨x3£¬y3£©£¬D£¨x4£¬y4£©£¬
¡ß$\overrightarrow{AC}$Óë$\overrightarrow{BD}$ͬÏò£¬ÇÒ|AC|=|BD|£¬![]()
¡à$\overrightarrow{AB}$=$\overrightarrow{CD}$£¬¡àx1-x2=x3-x4£¬
¡à£¨x1+x2£©2-4x1x2=£¨x3+x4£©2-4x3x4£¬
ÉèÖ±ÏßlµÄбÂÊΪk£¬Ôòl·½³Ì£ºy=kx+1£¬
ÓÉ$\left\{\begin{array}{l}{y=kx+1}\\{{x}^{2}=4y}\end{array}\right.$£¬¿ÉµÃx2-4kx-4=0£¬
ÓÉΤ´ï¶¨Àí¿ÉµÃx1+x2=4k£¬x1x2=-4£¬
ÓÉ$\left\{\begin{array}{l}{y=kx+1}\\{\frac{{y}^{2}}{9}+\frac{{x}^{2}}{8}=1}\end{array}\right.$£¬µÃ£¨9+8k2£©x2+16kx-64=0£¬
ÓÉΤ´ï¶¨Àí¿ÉµÃx3+x4=-$\frac{16k}{9+8{k}^{2}}$£¬x3x4=-$\frac{64}{9+8{k}^{2}}$£¬
Ó֡ߣ¨x1+x2£©2-4x1x2=£¨x3+x4£©2-4x3x4£¬
¡à16£¨k2+1£©=$\frac{1{6}^{2}{k}^{2}}{£¨9+8{k}^{2}£©^{2}}$+$\frac{4¡Á64}{9+8{k}^{2}}$£¬
»¯¼òµÃ16£¨k2+1£©=$\frac{1{6}^{2}¡Á9£¨{k}^{2}+1£©}{£¨9+8{k}^{2}£©^{2}}$£¬
¡à£¨9+8k2£©2=16¡Á9£¬½âµÃk=¡À$\frac{\sqrt{6}}{4}$£¬
¼´Ö±ÏßlµÄбÂÊΪ¡À$\frac{\sqrt{6}}{4}$£®
µãÆÀ ±¾ÌâÊÇÒ»µÀÖ±ÏßÓëÔ²×¶ÇúÏßµÄ×ÛºÏÌ⣬¿¼²éÇóÍÖÔ²·½³ÌÒÔ¼°Ö±ÏßµÄбÂÊ£¬Éæ¼°µ½Î¤´ï¶¨ÀíµÈ֪ʶ£¬¿¼²é¼ÆËãÄÜÁ¦£¬×¢Òâ½âÌâ·½·¨µÄ»ýÀÛ£¬ÊôÓÚÖеµÌ⣮
| Äê¼¶ | ¸ßÖÐ¿Î³Ì | Äê¼¶ | ³õÖÐ¿Î³Ì |
| ¸ßÒ» | ¸ßÒ»Ãâ·Ñ¿Î³ÌÍÆ¼ö£¡ | ³õÒ» | ³õÒ»Ãâ·Ñ¿Î³ÌÍÆ¼ö£¡ |
| ¸ß¶þ | ¸ß¶þÃâ·Ñ¿Î³ÌÍÆ¼ö£¡ | ³õ¶þ | ³õ¶þÃâ·Ñ¿Î³ÌÍÆ¼ö£¡ |
| ¸ßÈý | ¸ßÈýÃâ·Ñ¿Î³ÌÍÆ¼ö£¡ | ³õÈý | ³õÈýÃâ·Ñ¿Î³ÌÍÆ¼ö£¡ |
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ
| A£® | 1 | B£® | $\frac{7}{8}$ | C£® | $\frac{3}{4}$ | D£® | $\frac{1}{2}$ |
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ
| A£® | Èôa1+a2£¾0£¬Ôòa2+a3£¾0 | B£® | Èôa1+a3£¼0£¬Ôòa1+a2£¼0 | ||
| C£® | Èô0£¼a1£¼a2£¬Ôòa2$£¾\sqrt{{a}_{1}{a}_{3}}$ | D£® | Èôa1£¼0£¬Ôò£¨a2-a1£©£¨a2-a3£©£¾0 |
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ
| ¼ÓÓÍʱ¼ä | ¼ÓÓÍÁ¿£¨Éý£© | ¼ÓÓÍʱµÄÀÛ¼ÆÀï³Ì£¨Ç§Ã×£© |
| 2015Äê5ÔÂ1ÈÕ | 12 | 35000 |
| 2015Äê5ÔÂ15ÈÕ | 48 | 35600 |
| A£® | 6Éý | B£® | 8Éý | C£® | 10Éý | D£® | 12Éý |
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ
| A£® | -1 | B£® | 0 | C£® | 1 | D£® | 2 |
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ
| A£® | a£¾0£¬b£¼0£¬c£¾0£¬d£¾0 | B£® | a£¾0£¬b£¼0£¬c£¼0£¬d£¾0 | C£® | a£¼0£¬b£¼0£¬c£¼0£¬d£¾0 | D£® | a£¾0£¬b£¾0£¬c£¾0£¬d£¼0 |
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¹ú¼ÊѧУÓÅÑ¡ - Á·Ï°²áÁбí - ÊÔÌâÁбí
ºþ±±Ê¡»¥ÁªÍøÎ¥·¨ºÍ²»Á¼ÐÅÏ¢¾Ù±¨Æ½Ì¨ | ÍøÉÏÓк¦ÐÅÏ¢¾Ù±¨×¨Çø | µçÐÅթƾٱ¨×¨Çø | ÉæÀúÊ·ÐéÎÞÖ÷ÒåÓк¦ÐÅÏ¢¾Ù±¨×¨Çø | ÉæÆóÇÖȨ¾Ù±¨×¨Çø
Î¥·¨ºÍ²»Á¼ÐÅÏ¢¾Ù±¨µç»°£º027-86699610 ¾Ù±¨ÓÊÏ䣺58377363@163.com