精英家教网 > 高中数学 > 题目详情
9.设函数f(x)=$\left\{\begin{array}{l}{3x-b,x<1}\\{{2}^{x},x≥1}\end{array}\right.$,若f(f($\frac{5}{6}$))=4,则b=(  )
A.1B.$\frac{7}{8}$C.$\frac{3}{4}$D.$\frac{1}{2}$

分析 直接利用分段函数以及函数的零点,求解即可.

解答 解:函数f(x)=$\left\{\begin{array}{l}{3x-b,x<1}\\{{2}^{x},x≥1}\end{array}\right.$,若f(f($\frac{5}{6}$))=4,
可得f($\frac{5}{2}-b$)=4,
若$\frac{5}{2}-b≥1$,即b≤$\frac{3}{2}$,可得${2}^{\frac{5}{2}-b}=4$,解得b=$\frac{1}{2}$.
若$\frac{5}{2}-b<1$,即b>$\frac{3}{2}$,可得$3×(\frac{5}{2}-b)-b=4$,解得b=$\frac{7}{8}$<$\frac{3}{2}$(舍去).
故选:D.

点评 本题考查函数的零点与方程根的关系,函数值的求法,考查分段函数的应用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

19.证明:
(1)(x-$\frac{1}{x}$)2n的展开式中常数项是(-2)n$\frac{1×3×5×…×(2n-1)}{n!}$.
(2)(1+x)2n的展开式的中间一项是$\frac{1×3×5×…×(2n-1)}{n!}$(2x)n

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.化简:$\frac{sin(2π+a)cos(π-a)cos(\frac{π}{2}-a)cos(\frac{7π}{2}-a)}{cos(π-a)sin(3π-a)sin(-π+a)sin(\frac{5π}{2}+a)}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.若样本数据x1,x2,…,x10的标准差为8,则数据2x1-1,2x2-1,…,2x10-1的标准差为(  )
A.8B.15C.16D.32

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.已知集合A={x|2<x<4},B={x|(x-1)(x-3)<0},则A∩B=(  )
A.(1,3)B.(1,4)C.(2,3)D.(2,4)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.过双曲线C:$\frac{{x}^{2}}{{a}^{2}}-\frac{{y}^{2}}{{b}^{2}}=1$(a>0,b>0)的右焦点作一条与其渐近线平行的直线,交C于点P.若点P的横坐标为2a,则C的离心率为2+$\sqrt{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.已知某批零件的长度误差(单位:毫米)服从正态分布N(0,32),从中随机抽取一件,其长度误差落在区间(3,6)内的概率为(  )
(附:若随机变量ξ服从正态分布N(μ,σ2),则P(μ-σ<ξ<μ+σ)=68.26%,P(μ-2σ<ξ<μ+2σ)=95.44%)
A.4.56%B.13.59%C.27.18%D.31.74%

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.已知集合A={1,2,3},B={2,4,5},则集合A∪B中元素的个数为5.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知抛物线C1:x2=4y的焦点F也是椭圆C2:$\frac{{y}^{2}}{{a}^{2}}$+$\frac{{x}^{2}}{{b}^{2}}$=1(a>b>0)的一个焦点,C1与C2的公共弦的长为2$\sqrt{6}$,过点F的直线l与C1相交于A,B两点,与C2相交于C,D两点,且$\overrightarrow{AC}$与$\overrightarrow{BD}$同向.
(Ⅰ)求C2的方程;
(Ⅱ)若|AC|=|BD|,求直线l的斜率.

查看答案和解析>>

同步练习册答案