精英家教网 > 高中数学 > 题目详情
9.设A是由有限个正整数组成的集合,若存在两个集合B,C满足:
①B∩C=∅;
②B∪C=A;
③B的元素之和等于C的元素之和.
则称集合A“可均分”,否则称A“不可均分”.
(Ⅰ)判断集合M={1,3,9,27,…,3n}(n∈N*)是否“可均分”,并说明理由;
(Ⅱ)求证:集合A={2015+1,2015+2,…,2015+93}“可均分”;
(Ⅲ)求出所有的正整整k,使得A={2015+1,2015+2,…,2015+k}“可均分”.

分析 (Ⅰ)根据“可均分”的定义进行判断即可;
(Ⅱ)结合可均分的定义进行证明;
(Ⅲ)根据“可均分”的定义进行求解.

解答 解:(Ⅰ)∵1+3+9+…+3n-1=$\frac{1×(1-{3}^{n})}{1-3}$=$\frac{1}{2}$(3n-1)<3n,不满足③,
则集合N={1,3,9,27,…,3n}(n∈N*)“不可均分”.
(Ⅱ)设B1={2015+1,2015+2,…,2015+47},C1={2015+48,2015+49,…,2015+93},
考虑到[(2015+48)+(2015+49)+…+(2015+93)]-[(2015+1)+(2015+2)+…+(2015+47)]=46×46-(2015+1)=100.
将B1中的2015+1与C1中的2015+51交换,得到集合B,C,
则得到的B,C满足条件①②③,
则集合A={2015+1,2015+2,…,2015+93}“可均分”;
(Ⅲ)一方面,假设A={2015+1,2015+2,…,2015+k}“可均分”,则存在B,C满足条件①②③,
∴(2015+1)+(2015+2)+…+(2015+k)=2016k+$\frac{k(k-1)}{2}$为偶数,
∴k=4a或k=4a+1(a∈N*).
设k=4a+1,不妨设B中的元素个数大于等于2a+1,C中的元素个数小于等于2a,
于是B的元素之和SB≥(2015+1)+(2015+2)+…+[2015+(2a+1)],
C的元素之和SC≤[2015+(2a+2)]+[2015+(2a+3)]+…+[2015+(4a+1)],
整理得:(2015+1)+(2015+2)+…+[2015+(2a+1)]
≤[2015+(2a+2)]+[2015+(2a+3)]+…+[2015+(4a+1)],
即2016(2a+1)+$\frac{(2a+1)•2a}{2}$≤2a(2017+2a)+$\frac{2a(2a-1)}{2}$,
即4032a+2016+4a2+a≤4034a+4a2+2a2-a,
解得:a2≥504,即a≥23,
∴k=4a(a∈N*)或k=4a+1(a≥23,a∈N*);
另一方面,当k=4a(a∈N*)时,A={2015+1,2015+2,…,2015+k}中的连续四个必可分成两两一组,
其和相等;
∴A={2015+1,2015+2,…,2015+k}“可均分”;
当k=4a+1(a≥23,a∈N*)时,
由(Ⅱ)问可知A={2015+1,2015+2,…,2015+k}的前93个数组成的集合“可均分”,
由前面的讨论知可将剩下的4p个元素分成和相等的两个不相交的子集,
即此时A={2015+1,2015+2,…,2015+k}“可均分”.
综上,k=4a(a∈N*)或k=4a+1(a≥23,a∈N*).

点评 本题主要考查与集合有关的新定义的应用,综合性较强,难度较大.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

19.已知抛物线C1:x2=4y的焦点F也是椭圆C2:$\frac{{y}^{2}}{{a}^{2}}$+$\frac{{x}^{2}}{{b}^{2}}$=1(a>b>0)的一个焦点,C1与C2的公共弦的长为2$\sqrt{6}$,过点F的直线l与C1相交于A,B两点,与C2相交于C,D两点,且$\overrightarrow{AC}$与$\overrightarrow{BD}$同向.
(Ⅰ)求C2的方程;
(Ⅱ)若|AC|=|BD|,求直线l的斜率.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.${∫}_{0}^{2}$(x-1)dx=0.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知函数f(x)=2$\sqrt{3}$sinxcosx-cos2x,x∈R
(1)求函数f(x)的单调增区间
(2)在△ABC中,角A、B、C所对边的长分别是a,b,c,若f(A)=2,C=$\frac{π}{4}$,c=2,求△ABC的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.求值:
(1)log432;
(2)2log510+log50.25;
(3)log10025+lg20;
(4)2log32-log3$\frac{32}{9}$+log38.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知函数f(x)=cos4x-2sinxcosx-sin4x.
(1)求y=lnf(x)的单调增区间;
(2)求f(x)的最小值以及相应的x的集合.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.已知正项数列{an}的前n项和为Sn,奇数项成公差为1的等差数列,当n为偶数时点(an,an+2)在直线y=3x+2上,又知a1=1,a2=2,则数列{an}的前2n项和S2n等于$\frac{{{n^2}-n-3+{3^{n+1}}}}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.2014年春节放假安排:正月初一至初七放假,共7天,某单位安排7位员工值班,每人值班1天,每天安排1人,若甲不在初一值班,乙不在初二值班,且丙和甲在相邻的两天值班,则不同的安排方案共有(  )
A.1440种B.1360种C.1282种D.1128种

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.现有橡皮泥制作的底面半径为5,高为4的圆锥和底面半径为2,高为8的圆柱各一个,若将它们重新制作成总体积与高均保持不变,但底面半径相同的新的圆锥和圆柱各一个,则新的底面半径为$\sqrt{7}$.

查看答案和解析>>

同步练习册答案