精英家教网 > 高中数学 > 题目详情
19.现有橡皮泥制作的底面半径为5,高为4的圆锥和底面半径为2,高为8的圆柱各一个,若将它们重新制作成总体积与高均保持不变,但底面半径相同的新的圆锥和圆柱各一个,则新的底面半径为$\sqrt{7}$.

分析 由题意求出原来圆柱和圆锥的体积,设出新的圆柱和圆锥的底面半径r,求出体积,由前后体积相等列式求得r.

解答 解:由题意可知,原来圆锥和圆柱的体积和为:$\frac{1}{3}×25π×4+4π×8=\frac{196π}{3}$.
设新圆锥和圆柱的底面半径为r,
则新圆锥和圆柱的体积和为:$\frac{1}{3}×4π{r}^{2}+8π{r}^{2}=\frac{28π{r}^{2}}{3}$.
∴$\frac{28π{r}^{2}}{3}=\frac{196π}{3}$,解得:$r=\sqrt{7}$.
故答案为:$\sqrt{7}$.

点评 本题考查了圆柱与圆锥的体积公式,是基础的计算题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

9.设A是由有限个正整数组成的集合,若存在两个集合B,C满足:
①B∩C=∅;
②B∪C=A;
③B的元素之和等于C的元素之和.
则称集合A“可均分”,否则称A“不可均分”.
(Ⅰ)判断集合M={1,3,9,27,…,3n}(n∈N*)是否“可均分”,并说明理由;
(Ⅱ)求证:集合A={2015+1,2015+2,…,2015+93}“可均分”;
(Ⅲ)求出所有的正整整k,使得A={2015+1,2015+2,…,2015+k}“可均分”.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.已知在△ABC中,∠A=2∠B,则$\frac{c}{b}$-$\frac{b}{a}$的取值范围是(-1,$\frac{5}{2}$).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.某中学调查了某班全部45名同学参加书法社团和演讲社团的情况,数据如下表:(单位:人)
参加书法社团未参加书法社团
参加演讲社团85
未参加演讲社团230
(Ⅰ)从该班随机选1名同学,求该同学至少参加一个社团的概率;
(Ⅱ)在既参加书法社团又参加演讲社团的8名同学中,有5名男同学A1,A2,A3,A4,A5,3名女同学B1,B2,B3.现从这5名男同学和3名女同学中各随机选1人,求A1被选中且B1未被选中的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.设f(x)=sinxcosx-cos2(x+$\frac{π}{4}$).
(Ⅰ)求f(x)的单调区间;
(Ⅱ)在锐角△ABC中,角A,B,C的对边分别为a,b,c,若f($\frac{A}{2}$)=0,a=1,求△ABC面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.汽车的“燃油效率”是指汽车每消耗1升汽油行驶的里程,如图描述了甲、乙、丙三辆汽车在不同速度下燃油效率情况,下列叙述中正确的是(  )
A.消耗1升汽油,乙车最多可行驶5千米
B.以相同速度行驶相同路程,三辆车中,甲车消耗汽油最多
C.甲车以80千米/小时的速度行驶1小时,消耗10升汽油
D.某城市机动车最高限速80千米/小时,相同条件下,在该市用丙车比用乙车更省油

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.已知5件产品中有2件次品,其余为合格品.现从这5件产品中任取2件,恰有一件次品的概率为(  )
A.0.4B.0.6C.0.8D.1

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.在一次马拉松比赛中,35名运动员的成绩(单位:分钟)的茎叶图如图所示.若将运动员按成绩由好到差编为1-35号,再用系统抽样方法从中抽取7人,则其中成绩在区间[139,151]上的运动员人数是(  )
A.3B.4C.5D.6

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.在数列{an}中,a1=2,an+1=2an,Sn为{an}的前n项和,若Sn=126,则n=6.

查看答案和解析>>

同步练习册答案