精英家教网 > 高中数学 > 题目详情
12.已知f(x)是定义在(0,+∞)上的函数,对任意两个不相等的正数x1,x2,都有$\frac{{x}_{2}f({x}_{1})-{x}_{1}({x}_{2})}{{x}_{2}-{x}_{1}}$<0,记a=$\frac{f({2}^{0.2})}{{2}^{0.2}}$,b=$\frac{f(sin\frac{π}{6})}{sin\frac{π}{6}}$,c=$\frac{f(lo{g}_{π}3)}{io{g}_{π}3}$,则(  )
A.c<b<aB.c<a<bC.b<a<cD.b<c<a

分析 由条件判断 函数$\frac{f(x)}{x}$在(0,+∞)上是增函数,再根据a=$\frac{f{(2}^{0.2})}{{2}^{0.2}}$,b=$\frac{f(\frac{1}{2})}{\frac{1}{2}}$,c=$\frac{f{(log}_{π}3)}{{log}_{π}3}$,可得 b<c<a.

解答 解:f(x)是定义在(0,+∞)上的函数,对任意两个不相等的正数x1,x2,不妨假设0<x1 <x2,都有$\frac{{x}_{2}f({x}_{1})-{x}_{1}({x}_{2})}{{x}_{2}-{x}_{1}}$<0,
即 $\frac{f{(x}_{1})}{{x}_{1}}$-$\frac{f{(x}_{2})}{{x}_{2}}$=$\frac{{x}_{2}•f{(x}_{1}){-x}_{1}•f{(x}_{2})}{{x}_{1}{•x}_{2}}$<0,即 $\frac{f{(x}_{1})}{{x}_{1}}$<$\frac{f{(x}_{2})}{{x}_{2}}$,
∴函数$\frac{f(x)}{x}$在(0,+∞)上是增函数.
∵$\frac{1}{2}$<logπ3<20.2,a=$\frac{f({2}^{0.2})}{{2}^{0.2}}$=$\frac{f{(2}^{0.2})}{{2}^{0.2}}$,b=$\frac{f(sin\frac{π}{6})}{sin\frac{π}{6}}$=$\frac{f(\frac{1}{2})}{\frac{1}{2}}$,c=$\frac{f(lo{g}_{π}3)}{io{g}_{π}3}$=$\frac{f{(log}_{π}3)}{{log}_{π}3}$,∴b<c<a,
故选:D.

点评 本题主要考查函数的单调性的应用,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

2.已知a∈R.命题p:函数f(x)=$\sqrt{{x^2}-2x+a}$的定义域为实数集R,命题q:函数g(x)=2x-a(x≤2)的值域为正实数集的子集.若“p∨q”是真命题,且“p∧q”是假命题,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知数列{an}的前n项和为Sn,且满足Sn=2an-2.
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)设函数f(x)=($\frac{1}{2}$)x,数列{bn}满足条件b1=2,f(bn+1)=$\frac{1}{f(-3-{b}_{n})}$,(n∈N*),若cn=$\frac{{b}_{n}}{{a}_{n}}$,求数列{cn}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.设函数f(x)=ex-ax+a.
(1)若f(x)的图象与x轴有2个交点,求实数a的取值范围;
(2)设g(x)=3ax2-ax+2+a,若f(x)+e-x≥g(x)对x∈R恒成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.设函数f(x)=$\left\{\begin{array}{l}1,x≥0\\-1,x<0\end{array}$,g(x)=$\frac{x^2}{e^x}$f(x-1),则函数g(x)的递增区间是(-∞,0],[1,2].

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.历届现代奥运会召开时间表如表:
年份1896年1900年1904年2016年
届数123n
则n的值为(  )
A.29B.30C.31D.32

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.要得到函数y=cos2x的图象,只需将函数y=cos(2x+$\frac{π}{3}$)的图象(  )
A.向右平移$\frac{π}{6}$个单位B.向右平移$\frac{π}{3}$个单位
C.向左平移$\frac{π}{3}$个单位D.向左平移$\frac{π}{6}$个单位

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知向量$\overrightarrow{a}$=(4,3),$\overrightarrow{b}$=(1,-1).
(Ⅰ)求$\overrightarrow{a}$与$\overrightarrow{b}$的夹角的余弦值;
(Ⅱ)若向量3$\overrightarrow{a}$+4$\overrightarrow{b}$与λ$\overrightarrow{a}$-$\overrightarrow{b}$平行,求实数λ的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.函数y=1+$\sqrt{cosx-\frac{1}{2}}$的定义域为{x|$-\frac{π}{3}+2kπ≤x≤\frac{π}{3}+2kπ$,k∈Z}.

查看答案和解析>>

同步练习册答案