精英家教网 > 高中数学 > 题目详情
12.下列命题中正确的是(  )
A.$\overrightarrow{OA}$-$\overrightarrow{OB}$=$\overrightarrow{AB}$B.$\overrightarrow{AB}$=$\overrightarrow{BA}$C.$\overrightarrow{0}$•$\overrightarrow{AB}$=$\overrightarrow{0}$D.$\overrightarrow{AB}+\overrightarrow{BC}$$+\overrightarrow{CD}$=$\overrightarrow{AD}$

分析 根据向量的加减的几何意义和向量的数量积运算即可判断

解答 解:$\overrightarrow{OA}$-$\overrightarrow{OB}$=$\overrightarrow{BA}$,$\overrightarrow{AB}$=-$\overrightarrow{BA}$,$\overrightarrow{0}$•$\overrightarrow{AB}$=0,$\overrightarrow{AB}+\overrightarrow{BC}$$+\overrightarrow{CD}$=$\overrightarrow{AD}$,
故选:D

点评 本题考查了向量的加减的几何意义和向量的数量积运算,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

15.已知向量$\overrightarrow a=({2cosα,{{sin}^2}α}),\overrightarrow b=({2sinα,t}),α∈({0,\frac{π}{2}}),t$为实数.
(1)若$\overrightarrow a-\overrightarrow b=({\frac{2}{5},0})$,求t的值;
(2)若t=1,且$\overrightarrow a•\overrightarrow b=1$,求$tan({2α+\frac{π}{4}})$的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.已知抛物线y2=8x上一点P到焦点的距离为4,则△PFO的面积为4.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.已知函数f(x)=$\left\{\begin{array}{l}{{e}^{x}+ax,x≤0}\\{(4-a)x+2a,x>0}\end{array}\right.$若对于任意两个不等实数x1,x2,都有$\frac{f({x}_{1})-f({x}_{2})}{{x}_{1}-{x}_{2}}$>1成立,则实数a的取值范围是(  )
A.[1,3)B.[$\frac{1}{2}$,3)C.[0,4)D.[$\frac{1}{2}$,4)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.已知等轴双曲线C的一个焦点是F1(-6,0),点M是等轴双曲线的渐近线上的一个动点,点P是圆(x+6)2+y2=1上的任意一点,则|PM|的最小值是(  )
A.3$\sqrt{2}$-1B.2$\sqrt{3}$-1C.3$\sqrt{3}$+1D.2$\sqrt{3}$+2

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知f(x)=|x-a|,a∈R.
(1)当a=1时,求不等式f(x)+|2x-5|≥6的解集;
(2)若函数g(x)=f(x)-|x-3|的值域为A,且[-1,2]⊆A,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.已知实数x,y满足$\left\{\begin{array}{l}{2x-y+6≥0}\\{x+y≥0}\\{x≤2}\end{array}\right.$,若目标函数z=-mx+y的最大值为-2m+10,最小值为-2m-2,则实数m的取值不可能是(  )
A.3B.2C.0D.-1

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.已知曲线$y=\frac{1}{4}{x^2}-3lnx$的一条切线的斜率为$-\frac{1}{2}$,则切点的横坐标为(  )
A.-3B.2C.-3或2D.$\frac{1}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.函数$f(x)=\frac{1}{2}cos(ωx+φ)$(ω>0,$|φ|<\frac{π}{2}$)的部分图象如图所示,则φ的值为(  )
A.$\frac{π}{3}$B.$\frac{π}{6}$C.$-\frac{π}{6}$D.$-\frac{π}{3}$

查看答案和解析>>

同步练习册答案