精英家教网 > 高中数学 > 题目详情
2.函数$f(x)=\frac{1}{2}cos(ωx+φ)$(ω>0,$|φ|<\frac{π}{2}$)的部分图象如图所示,则φ的值为(  )
A.$\frac{π}{3}$B.$\frac{π}{6}$C.$-\frac{π}{6}$D.$-\frac{π}{3}$

分析 由题意可得T,利用周期公式可求ω=2π,由于点($\frac{1}{6}$,0)在函数图象上,可得:0=$\frac{1}{2}$cos(2π×$\frac{1}{6}$+φ),由余弦函数的图象和性质结合范围$|φ|<\frac{π}{2}$,即可计算得解.

解答 解:由题意可得:$\frac{3T}{4}$=$\frac{11}{12}$-$\frac{1}{6}$=$\frac{3}{4}$,
∴T=1=$\frac{2π}{ω}$,解得ω=2π,
∴f(x)=$\frac{1}{2}$cos(2πx+φ),
∵点($\frac{1}{6}$,0)在函数图象上,可得:0=$\frac{1}{2}$cos(2π×$\frac{1}{6}$+φ),
∴2π×$\frac{1}{6}$+φ=kπ+$\frac{π}{2}$,k∈Z,解得φ=kπ+$\frac{π}{6}$,k∈Z,
∵$|φ|<\frac{π}{2}$,
∴当k=0时,φ=$\frac{π}{6}$.
故选:B.

点评 本题主要考查了由y=Asin(ωx+φ)的部分图象确定其解析式,考查了数形结合思想的应用,属基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

12.下列命题中正确的是(  )
A.$\overrightarrow{OA}$-$\overrightarrow{OB}$=$\overrightarrow{AB}$B.$\overrightarrow{AB}$=$\overrightarrow{BA}$C.$\overrightarrow{0}$•$\overrightarrow{AB}$=$\overrightarrow{0}$D.$\overrightarrow{AB}+\overrightarrow{BC}$$+\overrightarrow{CD}$=$\overrightarrow{AD}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.函数y=e-|lnx|-|2-x|的图象大致为(  )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.根据微信同程旅游的调查统计显示,参与网上购票的1000位购票者的年龄(单位:岁)情况如图所示.
(1)已知中间三个年龄段的网上购票人数成等差数列,求a,b的值;
(2)为鼓励大家网上购票,该平台常采用购票就发放酒店入住代金券的方法进行促销,具体做法如下:年龄在[30,50)岁的每人发放20元,其余年龄段的每人发放50元,先按发放代金券的金额采用分层抽样的方式从参与调查的1000位网上购票者中抽取5人,并在这5人中随机抽取3人进行回访调查,求此3人获得代金券的金额总和为90元的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.如图,在几何体A1B1C1-ABC中,△ABC为等边三角形,AA1⊥平面ABC,AA1∥BB1∥CC1,BB1:CC1:AA1=3:2:1
(Ⅰ)求证:平面A1B1C1⊥平面A1ABB1
(Ⅱ)F为线段BB1上一点,当A1B1∥平面ACF时,求$\frac{{B}_{1}F}{{B}_{1}B}$的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.已知$α∈R,sinα+2cosα=\frac{{\sqrt{10}}}{2}$,则tan2α=(  )
A.$\frac{4}{3}$B.$\frac{3}{4}$C.$-\frac{3}{4}$D.$-\frac{4}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知函数f(x)=xlnx.
(Ⅰ)求函数f(x)的单调区间和极值;
(Ⅱ)若f(x)≥m+$\frac{4}{m}$-k对任意的m∈[3,5]恒成立,求实数k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知椭圆C:x2+4y2=4.
(1)求椭圆C的离心率;
(2)椭圆C的长轴的两个端点分别为A,B,点P在直线x=1上运动,直线PA,PB分别与椭圆C相交于M,N两个不同的点,求证:直线MN与x轴的交点为定点.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.已知复数z=(2+i)(a+2i3)在复平面内对应的点在第四象限,则实数a的取值范围是(  )
A.(-∞,-1)B.(4,+∞)C.(-1,4)D.(-4,-1)

查看答案和解析>>

同步练习册答案