精英家教网 > 高中数学 > 题目详情
12.已知复数z=(2+i)(a+2i3)在复平面内对应的点在第四象限,则实数a的取值范围是(  )
A.(-∞,-1)B.(4,+∞)C.(-1,4)D.(-4,-1)

分析 利用复数的运算法则、不等式的解法、几何意义即可得出.

解答 解:复数z=(2+i)(a+2i3)=(2+i)(a-2i)=2a+2+(a-4)i,
在复平面内对应的点(2a+2,a-4)在第四象限,则2a+2>0,a-4<0,
解得-1<a<4.
实数a的取值范围是(-1,4).
故选:C.

点评 本题考查了复数的运算法则、几何意义、不等式的解法,考查了推理能力与计算能力,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

2.函数$f(x)=\frac{1}{2}cos(ωx+φ)$(ω>0,$|φ|<\frac{π}{2}$)的部分图象如图所示,则φ的值为(  )
A.$\frac{π}{3}$B.$\frac{π}{6}$C.$-\frac{π}{6}$D.$-\frac{π}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.已知向量$\overrightarrow{a}$=($\frac{\sqrt{3}}{2}$,$\frac{1}{2}$),$\overrightarrow{b}$=($\sqrt{3}$,-1),则$\overrightarrow{a}$,$\overrightarrow{b}$的夹角为(  )
A.$\frac{π}{4}$B.$\frac{π}{3}$C.$\frac{π}{2}$D.$\frac{2π}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.给出下列四个命题:
①若x∈A∩B,则x∈A或x∈B;
②?x∈(2+∞),都有x2>2x
③若a,b是实数,则a>b是a2>b2的充分不必要条件;
④“?x0∈R,x02+2>3x0”的否定是“?x∈R,x2+2≤3x”;
其中真命题的个数是(  )
A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.已知复数$z=\frac{{a+2{i^3}}}{2-i}$在复平面内对应的点在第四象限,则实数a的取值范围是(  )
A.(-∞,-1)B.(4,+∞)C.(-1,4)D.(-4,-1)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知矩阵M=$[\begin{array}{l}{1}&{a}\\{b}&{1}\end{array}]$,N=$[\begin{array}{l}{c}&{2}\\{0}&{d}\end{array}]$,若MN=$[\begin{array}{l}{2}&{4}\\{-2}&{0}\end{array}]$.求实数a,b,c,d的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.如图1,在矩形ABCD中,AB=8,AD=3,点E,F分别为AB、CD的中点,将四边形AEFD沿EF折到A1EFD1的位置,使∠A1EB=120°,如图2所示,点G、H分别在A1B、D1C上,A1G=D1H=$\sqrt{3}$,过点G、H的平面α与几何体A1EB-D1FC的面相交,交线围成一个正方形.
(1)在图中画出这个正方形(不必说明画法和理由);
(2)求点E到平面α的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.如图,已知菱形ABCD与直角梯形ABEF所在的平面互相垂直,其中BE∥AF,∠EBA=90°,AB=BE=$\frac{1}{2}$AF=2,∠CBA=$\frac{π}{3}$,P为DF的中点.
(1)求证:PE∥平面ABCD
(2)设G为线段AD上一点,$\overrightarrow{AG}$=λ$\overrightarrow{AD}$,若直线FG与平面ABEF所成角的正弦值为$\frac{\sqrt{39}}{26}$,求AG的长.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.如图,在正三棱柱ABC-A1B1C1中,点D是AB的上一点,且AD=tAB.
(1)当t=$\frac{1}{2}$时,求证:BC1∥平面A1CD;
(2)若AB=AA1,且t=$\frac{1}{3}$,求平面A1CD与平面BB1C1C所成锐二面角的余弦值.

查看答案和解析>>

同步练习册答案