精英家教网 > 高中数学 > 题目详情
4.如图1,在矩形ABCD中,AB=8,AD=3,点E,F分别为AB、CD的中点,将四边形AEFD沿EF折到A1EFD1的位置,使∠A1EB=120°,如图2所示,点G、H分别在A1B、D1C上,A1G=D1H=$\sqrt{3}$,过点G、H的平面α与几何体A1EB-D1FC的面相交,交线围成一个正方形.
(1)在图中画出这个正方形(不必说明画法和理由);
(2)求点E到平面α的距离.

分析 (1)在BE或A1E上取一点M,使得GM=GH=3,求出M点的位置即可作出截面图形;
(2)过E作EP⊥GM,则可证明EP⊥平面α,在△EPM中求出EP即可.

解答 解:(1)由题意可知A1E=BE=4,GH=A1D1=3,
在△A1BE中,由余弦定理得A1B=$\sqrt{{4}^{2}+{4}^{2}-2×4×4×cos120°}$=4$\sqrt{3}$,
设平面α与几何体的截面正方形为GHNM,则GM=3,
若M在棱BE上,设BM=x,则由余弦定理得cos30°=$\frac{(3\sqrt{3})^{2}+{x}^{2}-9}{2•3\sqrt{3}•x}$=$\frac{\sqrt{3}}{2}$,解得x=3,
若M在棱A1E上,设A1M=x,
则由余弦定理得cos30°=$\frac{3+{x}^{2}-9}{2•\sqrt{3}•x}$=$\frac{\sqrt{3}}{2}$,解得x=9(舍).
过M作MN∥EF交CF于N,连接GH,MN,GM,HN,
则正方形GHNM即为要作的正方形.
(2)过E作EP⊥GM,垂足为P,连接HP,
∵EF⊥A1E,EF⊥BE,A1E∩BE=E,
∴EF⊥平面A1BE,
∵A1G=D1H,∴GH∥EF,
∴GH⊥平面A1BE,又EP?平面A1BE,
∴EP⊥GH,又GH∩GM=G,GH?平面GHNM,GM?平面GHNM,
∴EP⊥平面GHNM,
由(1)可知GM∥A1E,EM=1,
∴∠PEM=30°,
∴PM=$\frac{1}{2}$,PE=$\sqrt{E{M}^{2}-P{M}^{2}}$=$\frac{\sqrt{3}}{2}$,
∴点E到平面α的距离为$\frac{\sqrt{3}}{2}$.

点评 本题考查了线面平行的性质,空间距离的计算,属于中档题

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

14.已知函数f(x)=xlnx.
(Ⅰ)求函数f(x)的单调区间和极值;
(Ⅱ)若f(x)≥m+$\frac{4}{m}$-k对任意的m∈[3,5]恒成立,求实数k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.已知向量$\overrightarrow{a}$=(m,2),$\overrightarrow{b}$=(2,-1),且$\overrightarrow{a}$⊥$\overrightarrow{b}$,则$\frac{|2\overrightarrow{a}-\overrightarrow{b}|}{\overrightarrow{a}•(\overrightarrow{a}+\overrightarrow{b})}$等于(  )
A.$-\frac{5}{3}$B.1C.2D.$\frac{5}{4}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.已知复数z=(2+i)(a+2i3)在复平面内对应的点在第四象限,则实数a的取值范围是(  )
A.(-∞,-1)B.(4,+∞)C.(-1,4)D.(-4,-1)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知数列{an}是公差为2的等差数列,数列{bn}满足b1=1,b2=2,且当n∈N*时,anbn+1-4bn+1=4nbn
(1)求数列{bn}的通项公式;
(2)设数列{cn}满足cn=$\frac{4}{{a}_{n}{a}_{n+1}}$(n∈N*),记数列{cn}的前n项和为Tn,求使Tn>$\frac{4}{15}$成立的正整数n的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.如图所示,已知菱形ABCD是由等边△ABD与等边△BCD拼接而成,两个小圆与△ABD以及△BCD分别相切,则往菱形ABCD内投掷一个点,该点落在阴影部分内的概率为(  )
A.$\frac{\sqrt{3}}{9π}$B.$\frac{\sqrt{3}}{18π}$C.$\frac{\sqrt{3}π}{18}$D.$\frac{\sqrt{3}π}{9}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.已知定义域为$[{\frac{1}{3},3}]$的函数f(x)满足:当$x∈[{\frac{1}{3},1}]$时,$f(x)=2f(\frac{1}{x})$,且当x∈[1,3]时,f(x)=lnx,若在区间$[{\frac{1}{3},3}]$内,函数g(x)=f(x)-ax的图象与x轴有3个不同的交点,则实数a的取值范围是(  )
A.$(0,\frac{1}{e})$B.$(0,\frac{1}{2e})$C.$[\frac{ln3}{3},\frac{1}{e})$D.$[\frac{ln3}{3},1)$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.已知函数$f(x)=\left\{\begin{array}{l}{log_a}x,x>0\\|{x+3}|,\;-4≤x<0\end{array}\right.$(a>0且a≠1).若函数f(x)的图象上有且只有两个点关于y轴对称,则a的取值范围是(  )
A.(0,1)B.(1,4)C.(0,1)∪(1,+∞)D.(0,1)∪(1,4)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.数列{an}中,若an+1(an+1)=an,a1=1,则a6=$\frac{1}{6}$.

查看答案和解析>>

同步练习册答案