精英家教网 > 高中数学 > 题目详情
9.如图所示,已知菱形ABCD是由等边△ABD与等边△BCD拼接而成,两个小圆与△ABD以及△BCD分别相切,则往菱形ABCD内投掷一个点,该点落在阴影部分内的概率为(  )
A.$\frac{\sqrt{3}}{9π}$B.$\frac{\sqrt{3}}{18π}$C.$\frac{\sqrt{3}π}{18}$D.$\frac{\sqrt{3}π}{9}$

分析 设等边三角形的边长为a,则内切圆的半径为$\frac{\sqrt{3}}{6}$a,求出相应的面积,以面积为测度可得结论.

解答 解:设等边三角形的边长为a,则内切圆的半径为$\frac{\sqrt{3}}{6}$a,
∴往菱形ABCD内投掷一个点,该点落在阴影部分内的概率为$\frac{2×π×(\frac{\sqrt{3}}{6}a)^{2}}{2×\frac{\sqrt{3}}{4}{a}^{2}}$=$\frac{\sqrt{3}π}{9}$,
故选:D.

点评 本题考查几何概型,考查面积的计算,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

19.已知在锐角△ABC中,角A,B,C的对边分别是a,b,c,2asinB=$\sqrt{3}$b,b=2,c=3,AD是角A的平分线,D在BC上,则BD=$\frac{{3\sqrt{7}}}{5}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.给出下列四个命题:
①若x∈A∩B,则x∈A或x∈B;
②?x∈(2+∞),都有x2>2x
③若a,b是实数,则a>b是a2>b2的充分不必要条件;
④“?x0∈R,x02+2>3x0”的否定是“?x∈R,x2+2≤3x”;
其中真命题的个数是(  )
A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知矩阵M=$[\begin{array}{l}{1}&{a}\\{b}&{1}\end{array}]$,N=$[\begin{array}{l}{c}&{2}\\{0}&{d}\end{array}]$,若MN=$[\begin{array}{l}{2}&{4}\\{-2}&{0}\end{array}]$.求实数a,b,c,d的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.如图1,在矩形ABCD中,AB=8,AD=3,点E,F分别为AB、CD的中点,将四边形AEFD沿EF折到A1EFD1的位置,使∠A1EB=120°,如图2所示,点G、H分别在A1B、D1C上,A1G=D1H=$\sqrt{3}$,过点G、H的平面α与几何体A1EB-D1FC的面相交,交线围成一个正方形.
(1)在图中画出这个正方形(不必说明画法和理由);
(2)求点E到平面α的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知函数f(x)=$\frac{{x}^{2}}{2e}$-ax.
(1)若a=$\frac{1}{2}$,求曲线y=f(x)在(e,f(e))处的切线方程;
(2)若关于x的不等式f(x)≥ax+b≥lnx-ax在(0,+∞)上恒成立,求实数a,b的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.如图,已知菱形ABCD与直角梯形ABEF所在的平面互相垂直,其中BE∥AF,∠EBA=90°,AB=BE=$\frac{1}{2}$AF=2,∠CBA=$\frac{π}{3}$,P为DF的中点.
(1)求证:PE∥平面ABCD
(2)设G为线段AD上一点,$\overrightarrow{AG}$=λ$\overrightarrow{AD}$,若直线FG与平面ABEF所成角的正弦值为$\frac{\sqrt{39}}{26}$,求AG的长.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.已知两个集合A,B,满足B⊆A.若对任意的x∈A,存在ai,aj∈B(i≠j),使得x=λ1ai2aj(λ1,λ2∈{-1,0,1}),则称B为A的一个基集.若A={1,2,3,4,5,6,7,8,9,10},则其基集B元素个数的最小值是3.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.已知ω>0,设x1,x2是方程sin(ωx+$\frac{π}{3}$)=$\frac{\sqrt{3}}{2}$的两个不同的实数根,且|x2-x1|的最小值为2,则ω等于(  )
A.$\frac{π}{2}$B.$\frac{π}{3}$C.$\frac{π}{4}$D.$\frac{π}{6}$

查看答案和解析>>

同步练习册答案