分析 由已知及正弦定理可得$2sinAsinB=\sqrt{3}sinB$,结合sinB≠0,可得sinA=$\frac{\sqrt{3}}{2}$,可求A的值,由余弦定理可得a,根据角分线定理可求BD的值.
解答 解:∵2asinB=$\sqrt{3}$b,
∴由正弦定理可得$2sinAsinB=\sqrt{3}sinB$,
∵sinB≠0,可得sinA=$\frac{\sqrt{3}}{2}$,
∴由A为锐角,可得$A=\frac{π}{3}$,
∵b=2,c=3,
∴由余弦定理可得a2=b2+c2-2bcosA=4+9-2×$2×3×\frac{1}{2}$=7,可得:a=$BC=\sqrt{7}$,
∴根据角分线定理可知,$BD=\frac{{3\sqrt{7}}}{5}$.
故答案为:$\frac{{3\sqrt{7}}}{5}$.
点评 本题主要考查了正弦定理,余弦定理,角分线定理在解三角形中的综合应用,考查了计算能力和转化思想,属于中档题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{4}{3}$ | B. | $\frac{3}{4}$ | C. | $-\frac{3}{4}$ | D. | $-\frac{4}{3}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 14,9.5 | B. | 9,9 | C. | 9,10 | D. | 14,9 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{\sqrt{3}}{9π}$ | B. | $\frac{\sqrt{3}}{18π}$ | C. | $\frac{\sqrt{3}π}{18}$ | D. | $\frac{\sqrt{3}π}{9}$ |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com