精英家教网 > 高中数学 > 题目详情
9.如图,在四棱锥P-ABCD中,∠ABC=∠ACD=90°,∠BAC=∠CAD=60°,PA⊥平面ABCD,PA=2,AB=1.
(1)设点E为PD的中点,求证:CE∥平面PAB;
(2)线段PD上是否存在一点N,使得直线CN与平面PAC所成的角θ的正弦值为$\frac{\sqrt{15}}{5}$?若存在,试确定点N的位置,若不存在,请说明理由.

分析 (1)取AD中点M,利用三角形的中位线证明EM∥平面PAB,利用同位角相等证明MC∥AB,得到平面EMC∥平面PAB,证得EC∥平面PAB;
(2)建立坐标系,求出平面PAC的法向量,利用直线CN与平面PAC所成的角θ的正弦值为$\frac{\sqrt{15}}{5}$,可得结论.

解答 (1)证明:取AD中点M,连EM,CM,则EM∥PA.
∵EM?平面PAB,PA?平面PAB,
∴EM∥平面PAB.
在Rt△ACD中,∠CAD=60°,AC=AM=2,∴∠ACM=60°.
而∠BAC=60°,∴MC∥AB.
∵MC?平面PAB,AB?平面PAB,∴MC∥平面PAB.
∵EM∩MC=M,∴平面EMC∥平面PAB.
∵EC?平面EMC,∴EC∥平面PAB.
(2)解:过A作AF⊥AD,交BC于F,建立如图所示的坐标系,则A(0,0,0),B($\frac{\sqrt{3}}{2}$,-$\frac{1}{2}$,0),C($\sqrt{3}$,1,0),D(0,4,0),P(0,0,2),

设平面PAC的法向量为$\overrightarrow{n}$=(x,y,z),则$\left\{\begin{array}{l}{2z=0}\\{\sqrt{3}x+y=0}\end{array}\right.$,取$\overrightarrow{n}$=($\sqrt{3}$,-3,0),
设$\overrightarrow{PN}$=λ$\overrightarrow{PD}$(0≤λ≤1),则$\overrightarrow{PN}$=(0,4λ,-2λ),$\overrightarrow{CN}$=(-λ-1,2-2λ),
∴|cos<$\overrightarrow{n}$,$\overrightarrow{CN}$>|=$\frac{|12λ|}{\sqrt{3+(4λ-1)^{2}+(2-2λ)^{2}}•\sqrt{12}}$=$\frac{\sqrt{15}}{5}$,∴$λ=\frac{1}{2}$,
∴N为PD的中点,使得直线CN与平面PAC所成的角θ的正弦值为$\frac{\sqrt{15}}{5}$.

点评 本题考查线面平行的判定,考查线面角,考查向量知识的运用,考查学生分析解决问题的能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

12.已知函数f(x)=$\sqrt{3}$sin2x+a•cos2x(a∈R).
(Ⅰ)若f($\frac{π}{6}$)=2,求a的值;
(Ⅱ)若f(x)在[$\frac{π}{12}$,$\frac{7π}{12}$]上单调递减,求f(x)的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.已知函数f(x)=$\left\{\begin{array}{l}{{e}^{x}+ax,x≤0}\\{(4-a)x+2a,x>0}\end{array}\right.$若对于任意两个不等实数x1,x2,都有$\frac{f({x}_{1})-f({x}_{2})}{{x}_{1}-{x}_{2}}$>1成立,则实数a的取值范围是(  )
A.[1,3)B.[$\frac{1}{2}$,3)C.[0,4)D.[$\frac{1}{2}$,4)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知f(x)=|x-a|,a∈R.
(1)当a=1时,求不等式f(x)+|2x-5|≥6的解集;
(2)若函数g(x)=f(x)-|x-3|的值域为A,且[-1,2]⊆A,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.已知实数x,y满足$\left\{\begin{array}{l}{2x-y+6≥0}\\{x+y≥0}\\{x≤2}\end{array}\right.$,若目标函数z=-mx+y的最大值为-2m+10,最小值为-2m-2,则实数m的取值不可能是(  )
A.3B.2C.0D.-1

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.已知Sn为数列{an}的前n项和,an=2•3n-1(n∈N*),若bn=$\frac{{a}_{n+1}}{{S}_{n}{S}_{n+1}}$,则b1+b2+…bn=$\frac{1}{2}$-$\frac{1}{{3}^{n+1}-1}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.已知曲线$y=\frac{1}{4}{x^2}-3lnx$的一条切线的斜率为$-\frac{1}{2}$,则切点的横坐标为(  )
A.-3B.2C.-3或2D.$\frac{1}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.设复数z1,z2在复平面内的对应点关于实轴对称,z1=2+i,则z1z2=(  )
A.3B.5C.-4+iD.4+i

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.已知在锐角△ABC中,角A,B,C的对边分别是a,b,c,2asinB=$\sqrt{3}$b,b=2,c=3,AD是角A的平分线,D在BC上,则BD=$\frac{{3\sqrt{7}}}{5}$.

查看答案和解析>>

同步练习册答案