精英家教网 > 高中数学 > 题目详情
14.已知Sn为数列{an}的前n项和,an=2•3n-1(n∈N*),若bn=$\frac{{a}_{n+1}}{{S}_{n}{S}_{n+1}}$,则b1+b2+…bn=$\frac{1}{2}$-$\frac{1}{{3}^{n+1}-1}$.

分析 an=2•3n-1(n∈N*),可得Sn=$\frac{2({3}^{n}-1)}{3-1}$=3n-1.可得:bn=$\frac{{a}_{n+1}}{{S}_{n}{S}_{n+1}}$=$\frac{2×{3}^{n}}{({3}^{n}-1)({3}^{n+1}-1)}$=$\frac{1}{{3}^{n}-1}$-$\frac{1}{{3}^{n+1}-1}$,再利用裂项求和方法即可得出.

解答 解:an=2•3n-1(n∈N*),∴Sn=$\frac{2({3}^{n}-1)}{3-1}$=3n-1.
∴bn=$\frac{{a}_{n+1}}{{S}_{n}{S}_{n+1}}$=$\frac{2×{3}^{n}}{({3}^{n}-1)({3}^{n+1}-1)}$=$\frac{1}{{3}^{n}-1}$-$\frac{1}{{3}^{n+1}-1}$,
则b1+b2+…bn=$(\frac{1}{2}-\frac{1}{{3}^{2}-1})$+$(\frac{1}{{3}^{2}-1}-\frac{1}{{3}^{3}-1})$+…+$(\frac{1}{{3}^{n}-1}-\frac{1}{{3}^{n+1}-1})$=$\frac{1}{2}$-$\frac{1}{{3}^{n+1}-1}$,
故答案为:$\frac{1}{2}$-$\frac{1}{{3}^{n+1}-1}$.

点评 本题考查了数列递推关系、等比数列的通项公式与求和公式、裂项求和方法,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

17.对于n维向量A=(a1,a2,…,an),若对任意i∈{1,2,…,n}均有ai=0或ai=1,则称A为n维T向量.对于两个n维T向量A,B,定义d(A,B)=$\sum_{i=1}^n{|{a_i}-{b_i}|}$.
(Ⅰ)若A=(1,0,1,0,1),B=(0,1,1,1,0),求d(A,B)的值.
(Ⅱ)现有一个5维T向量序列:A1,A2,A3,…,若A1=(1,1,1,1,1)且满足:d(Ai,Ai+1)=2,i∈N*.求证:该序列中不存在5维T向量(0,0,0,0,0).
(Ⅲ)现有一个12维T向量序列:A1,A2,A3,…,若${A_1}=(\underbrace{1,1,…,1}_{12个})$且满足:d(Ai,Ai+1)=m,m∈N*,i=1,2,3,…,若存在正整数j使得${A_j}=(\underbrace{0,0,…,0}_{12个})$,Aj为12维T向量序列中的项,求出所有的m.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.在△ABC中,a,b,c分别是角A、B、C所对的边长,A、B均为锐角,若sinA=cosB,则$\frac{a+b}{c}$的最大值是(  )
A.1B.$\sqrt{2}$C.$\sqrt{3}$D.2

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.如图,将一块半径为2的半圆形纸板切割成等腰梯形的形状,下底AB是半圆的直径,上底CD的端点在半圆上,则所得梯形的周长的最大值为10.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.如图,在四棱锥P-ABCD中,∠ABC=∠ACD=90°,∠BAC=∠CAD=60°,PA⊥平面ABCD,PA=2,AB=1.
(1)设点E为PD的中点,求证:CE∥平面PAB;
(2)线段PD上是否存在一点N,使得直线CN与平面PAC所成的角θ的正弦值为$\frac{\sqrt{15}}{5}$?若存在,试确定点N的位置,若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知矩阵M=$[\begin{array}{l}{1}&{a}\\{-1}&{b}\end{array}]$,点(1,-1)在M对应的变换作用下得到点(-1,5),求矩阵M的特征值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.已知正数数列{an}的前n项和Sn满足:Sn和2的等比中项等于an和2的等差中项,则a1=2,Sn=2n2

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知函数f(x)=$\frac{1}{2}$ax2-lnx,a∈R
(Ⅰ)求函数f(x)的单调区间;
(Ⅱ)对?x1,x2∈[1,e],总有|f(x1)-f(x2)≤3成立,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.已知向量$\overrightarrow{AB}=({1,0}),\overrightarrow{AC}=({-2,3})$,则$\overrightarrow{AB}•\overrightarrow{BC}$=-3.

查看答案和解析>>

同步练习册答案