精英家教网 > 高中数学 > 题目详情
3.已知函数f(x)=$\frac{1}{2}$ax2-lnx,a∈R
(Ⅰ)求函数f(x)的单调区间;
(Ⅱ)对?x1,x2∈[1,e],总有|f(x1)-f(x2)≤3成立,求a的取值范围.

分析 (Ⅰ)求出函数的导数,由此根据a的取值范围分类讨论,利用导数性质能求出f(x)的单调区间.
(Ⅱ)问题转化为x∈[1,e]时,f(x)max-f(x)min≤3恒成立,通过讨论a的范围,求出函数的最大值和最小值,得到关于a的不等式,解出即可.

解答 解:(Ⅰ)x>0,f′(x)=ax-$\frac{1}{x}$=$\frac{{ax}^{2}-1}{x}$,
若a≤0,则f′(x)<0恒成立,
∴f(x)的减区间为(0,+∞),
若a>0,令f′(x)=0,得x=$\frac{\sqrt{a}}{a}$(x=-$\frac{\sqrt{a}}{a}$舍去).
当x∈(0,$\frac{\sqrt{a}}{a}$)时,f′(x)<0,
∴f(x)的减区间为(0,$\frac{\sqrt{a}}{a}$);
当x∈($\frac{\sqrt{a}}{a}$,+∞)时,f′(x)>0,
∴f(x)的增区间为($\frac{\sqrt{a}}{a}$,+∞).
(Ⅱ)对?x1,x2∈[1,e],总有|f(x1)-f(x2)≤3成立,
?x∈[1,e]时,f(x)max-f(x)min≤3恒成立,
①a≤$\frac{1}{{e}^{2}}$时,f(x)在区间[1,e]递减,
故f(x)max=f(1)=$\frac{a}{2}$,f(x)min=f(e)=$\frac{{e}^{2}}{2}$a-1,
令f(x)max-f(x)min=$\frac{a}{2}$-$\frac{{e}^{2}}{2}$a+1≤3,
解得:a$≥\frac{4}{1{-e}^{2}}$,
故$\frac{4}{1{-e}^{2}}$≤a≤$\frac{1}{{e}^{2}}$,符合题意;
②a≥1时,函数f(x)在[1,e]上递增,
故f(x)max=f(e)=$\frac{{e}^{2}}{2}$a-1,f(x)min=f(1)=$\frac{a}{2}$,
令f(x)max-f(x)min=$\frac{{e}^{2}}{2}$a-1-$\frac{a}{2}$≤3,解得:a≤$\frac{8}{{e}^{2}-1}$,
故1≤a≤$\frac{8}{{e}^{2}-1}$符合题意;
③$\frac{1}{{e}^{2}}$<a<1时,函数f(x)在[1,$\sqrt{\frac{1}{a}}$)递减,在($\sqrt{\frac{1}{a}}$,e]递增,
∴f(x)min=f($\sqrt{\frac{1}{a}}$)=$\frac{1}{2}$+$\frac{1}{2}$lna,又f(e)-f(1)=$\frac{1}{2}$(e2-1)a-1,
当$\frac{2}{{e}^{2}-1}$≤a<1时,f(x)max=f(e)=$\frac{{e}^{2}}{2}$•a-1,
令f(x)max-f(x)min=$\frac{{e}^{2}}{2}$•a-1-$\frac{1}{2}$-$\frac{1}{2}$lna≤3,即e2a-lna≤9,
设g(a)=e2a-lna,则g′(a)=$\frac{{e}^{2}a-1}{a}$>0恒成立,
故函数g(a)在区间[$\frac{2}{{e}^{2}-1}$,1]上递增,
而g(a)max=g(1)=e2<9,
故a∈[$\frac{2}{{e}^{2}-1}$,1]时,不等式e2a-lna≤9恒成立,
故$\frac{2}{{e}^{2}-1}$≤a<1符合题意;
当$\frac{1}{{e}^{2}}$<a<$\frac{2}{{e}^{2}-1}$时,f(x)max=f(1)=$\frac{a}{2}$,
令f(x)max-f(x)min=$\frac{a}{2}$-$\frac{1}{2}$-$\frac{1}{2}$lna≤3,
即a-lna≤7,设h(a)=a-lna,
则h′(a)=1-$\frac{1}{a}$=$\frac{a-1}{a}$<0恒成立,
故函数h(a)在区间[$\frac{1}{{e}^{2}}$,$\frac{2}{{e}^{2}-1}$]递减,
故h(x)max=h($\frac{1}{{e}^{2}}$)=$\frac{1}{{e}^{2}}$+2<7,
故$\frac{1}{{e}^{2}}$<a<$\frac{2}{{e}^{2}-1}$时,a-lna≤7恒成立,
故$\frac{1}{{e}^{2}}$<a<$\frac{2}{{e}^{2}-1}$符合题意,
综上,a的范围是[$\frac{4}{1{-e}^{2}}$,$\frac{8}{{e}^{2}-1}$].

点评 本题考查了函数的单调性、最值问题,考查导数的应用以及分类讨论思想,考查转化思想,是一道综合题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

6.已知函数f(x)=1nx+2x-6的零点在区间($\frac{k}{2}$,$\frac{k+1}{2}$)(k∈Z)内,那么k=5.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.已知Sn为数列{an}的前n项和,an=2•3n-1(n∈N*),若bn=$\frac{{a}_{n+1}}{{S}_{n}{S}_{n+1}}$,则b1+b2+…bn=$\frac{1}{2}$-$\frac{1}{{3}^{n+1}-1}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知袋中装有大小相同的2个白球,2个红球和1个黄球.一项游戏规定:每个白球、红球和黄球的分值分别是0分、1分和2分,每一局从袋中一次性取出三个球,将3个球对应的分值相加后称为该局的得分,计算完得分后将球放回袋中.当出现第n局得n(n∈N*)分的情况就算游戏过关,同时游戏结束,若四局过后仍未过关,游戏也结束.
(1)求在一局游戏中得3分的概率;
(2)求游戏结束时局数X的分布列和数学期望E(X).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.设复数z1,z2在复平面内的对应点关于实轴对称,z1=2+i,则z1z2=(  )
A.3B.5C.-4+iD.4+i

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.已知点(x,y)在△ABC所包围的阴影区域内(包括边界),若有且仅有B(4,2)是使得z=ax-y取得最大值的最优解,则实数a的取值范围为(  )
A.-1<a<1B.-1≤a≤1C.-1≤a<1D.-1<a≤1

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.某学校高一、高二、高三三个年级共有300名教师,为调查他们的备课时间情况,通过分层抽样获得了20名教师一周的备课时间,数据如下表(单位:小时):
高一年级77.588.59
高二年级78910111213
高三年级66.578.51113.51718.5
(1)试估计该校高三年级的教师人数;
(2)从高一年级和高二年级抽出的教师中,各随机选取一人,高一年级选出的人记为甲,高二年级选出的人记为乙,假设所有教师的备课时间相对独立,求该周甲的备课时间不比乙的备课时间长的概率;
(3)再从高一、高二、高三三个年级中各随机抽取一名教师,他们该周的备课时间分别是8、9、10(单位:小时),这三个数据与表格中的数据构成的新样本的平均数记为$\overline{x_1}$,表格中的数据平均数记为$\overline{x_0}$,试判断$\overline{x_0}$与$\overline{x_1}$的大小.(结论不要求证明)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.如图,棱柱ABCD-A1B1C1D1中,底面ABCD是平行四边形,侧棱AA1⊥底面ABCD,AB=1,AC=$\sqrt{3}$,BC=BB1=2.
(Ⅰ)求证:AC⊥平面ABB1A1
(Ⅱ)求点D到平面ABC1的距离d.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.在△ABC中,∠BAC=60°,AB=5,AC=4,D是AB上一点,且$\overrightarrow{AB}$•$\overrightarrow{CD}$=5,则|$\overrightarrow{BD}$|等于(  )
A.2B.4C.6D.1

查看答案和解析>>

同步练习册答案