精英家教网 > 高中数学 > 题目详情
8.已知点(x,y)在△ABC所包围的阴影区域内(包括边界),若有且仅有B(4,2)是使得z=ax-y取得最大值的最优解,则实数a的取值范围为(  )
A.-1<a<1B.-1≤a≤1C.-1≤a<1D.-1<a≤1

分析 由题意分别求出AB、BC所在直线的斜率,再由有且仅有B(4,2)是使得z=ax-y取得最大值的最优解可得a的取值范围.

解答 解:如图,

∵kAB=-1,kBC=1,
又有且仅有B(4,2)是使得z=ax-y取得最大值的最优解,
∴实数a的取值范围为-1<a<1.
故选:A.

点评 本题考查简单的线性规划,考查了数形结合的解题思想方法,是中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

11.设不等式|x-4|-|2x-7|>$\frac{1}{3}$(x-7)的解集为M.
(1)求M;
(2)证明:当a、b∈M时,|$\sqrt{ab}$-2|<|2$\sqrt{a}$-$\sqrt{b}$|.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知矩阵M=$[\begin{array}{l}{1}&{a}\\{-1}&{b}\end{array}]$,点(1,-1)在M对应的变换作用下得到点(-1,5),求矩阵M的特征值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.设f'(x)是函数y=f(x)的导数,f''(x)是f'(x)的导数,若方程f''(x)=0有实数解x0,则称点(x0,f(x0))为函数y=f(x)的“拐点”.已知:任何三次函数既有拐点,又有对称中心,且拐点就是对称中心.设$f(x)=\frac{1}{3}{x^3}-2{x^2}+\frac{8}{3}x+2$,数列{an}的通项公式为an=n-1007,则$\sum_{i=1}^{2017}{f({a_i})}$=(  )
A.2017B.2018C.8068D.4034

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知函数f(x)=$\frac{1}{2}$ax2-lnx,a∈R
(Ⅰ)求函数f(x)的单调区间;
(Ⅱ)对?x1,x2∈[1,e],总有|f(x1)-f(x2)≤3成立,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.赌博有陷阱.某种赌博游戏每局的规则是:参与者现在从标有5、6、7、8、9的相同小球中随机摸取一个,将小球上的数字作为其赌金(单位:元);随后放回该小球,再随机摸取两个小球,将两个小球上数字之差的绝对值的2倍作为其资金(单位:元).若随机变量ξ和η分别表示参与者在每一局赌博游戏中的赌金与资金,则Eξ-Eη=3(元).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.已知集合A={x|x>1},B={y|y=x2,x∈R},则(  )
A.A=BB.B?AC.A?BD.A∩B=∅

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.已知函数f(x)=$\left\{\begin{array}{l}{x^2}-2,x<-1\\{2^x}-1,x≥-1\end{array}$,则函数f(x)的值域为(  )
A.[-1,+∞)B.(-1,+∞)C.[-$\frac{1}{2}$,+∞)D.R

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.已知sin(θ-$\frac{π}{4}$)=$\frac{\sqrt{3}}{3}$,则sin2θ=(  )
A.$\frac{1}{3}$B.-$\frac{2}{3}$C.$\frac{2\sqrt{5}}{5}$D.-$\frac{2\sqrt{3}}{3}$

查看答案和解析>>

同步练习册答案