精英家教网 > 高中数学 > 题目详情
17.已知函数f(x)=$\left\{\begin{array}{l}{x^2}-2,x<-1\\{2^x}-1,x≥-1\end{array}$,则函数f(x)的值域为(  )
A.[-1,+∞)B.(-1,+∞)C.[-$\frac{1}{2}$,+∞)D.R

分析 画出分段函数的图象,然后判断函数的值域即可.

解答 解:根据分段函数f(x)=$\left\{\begin{array}{l}{x^2}-2,x<-1\\{2^x}-1,x≥-1\end{array}$,的图象可知,该函数的值域为(-1,+∞).

故选:B.

点评 本题考查分段函数的图象与性质.考查数形结合以及计算能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

7.在梯形ABCD中,AD∥BC,$\overrightarrow{AB}$•$\overrightarrow{BC}$=0,|$\overrightarrow{AB}$|=2,|$\overrightarrow{BC}$|=4,AC与BD相交于点E,$\overrightarrow{AC}$⊥$\overrightarrow{BD}$,则$\overrightarrow{AE}$•$\overrightarrow{CD}$=-$\frac{16}{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.已知点(x,y)在△ABC所包围的阴影区域内(包括边界),若有且仅有B(4,2)是使得z=ax-y取得最大值的最优解,则实数a的取值范围为(  )
A.-1<a<1B.-1≤a≤1C.-1≤a<1D.-1<a≤1

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知等差数列{an}的公差不为0,前n项和为Sn,S5=25,S1,S2,S4成等比数列.
(1)求an与Sn
(2)设${b_n}=\frac{2n+1}{{{S_n}{S_{n+1}}}}$,求证:b1+b2+b3+…+bn<1.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.如图,棱柱ABCD-A1B1C1D1中,底面ABCD是平行四边形,侧棱AA1⊥底面ABCD,AB=1,AC=$\sqrt{3}$,BC=BB1=2.
(Ⅰ)求证:AC⊥平面ABB1A1
(Ⅱ)求点D到平面ABC1的距离d.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.(Ⅰ)已知函数f(x)=|x+1|+|x-a|(a>0),若不等式f(x)≥5的解集为{x|x≤-2或x≥3},求a的值;
(Ⅱ) 已知实数a,b,c∈R+,且a+b+c=m,求证:$\frac{1}{a+b}$+$\frac{1}{b+c}$+$\frac{1}{c+a}$≥$\frac{9}{2m}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知函数f(x)=sin(ωx-$\frac{π}{6}$)(ω>0)的图象与x轴的相邻两个交点的距离为$\frac{π}{2}$.
(1)求w的值;
(2)设函数g(x)=f(x)+2cos2x-1,求g(x)在区间$[0,\frac{π}{2}]$上的最大值和最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.已知O为△ABC的外心,且$\overrightarrow{BO}=λ\overrightarrow{BA}+μ\overrightarrow{BC}$.
①若∠C=90°,则λ+μ=$\frac{1}{2}$;
②若∠ABC=60°,则λ+μ的最大值为$\frac{2}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.已知P1(x1,y1),P2(x2,y2),P3(x3,y3),P4(x4,y4)是抛物线C:y2=8x上的点,F是抛物线C上的焦点,若|PF1|+|PF2|+|PF3|+|PF4|=20,则x1+x2+x3+x4等于(  )
A.8B.10C.12D.16

查看答案和解析>>

同步练习册答案