| A. | 8 | B. | 10 | C. | 12 | D. | 16 |
分析 根据抛物线的定义分别求得|PF1|+|PF2|+|PF3|+|PF4|=x1+x2+x3+x4+2p,由2p=8,即可求得x1+x2+x3+x4=12.
解答 解:由抛物线C:y2=8x焦点在F(2,0),
由抛物线的性质可知:|PF1|=x1+$\frac{p}{2}$,|PF2|=x2+$\frac{p}{2}$,|PF3|=x3+$\frac{p}{2}$,|PF4|=x4+$\frac{p}{2}$,
|PF1|+|PF2|+|PF3|+|PF4|=x1+x2+x3+x4+2p=x1+x2+x3+x4+8=20,
则x1+x2+x3+x4=12,
故选C.
点评 本题考查抛物线的方程及焦半径公式,考查计算能力,属于基础题.
科目:高中数学 来源: 题型:选择题
| A. | [-1,+∞) | B. | (-1,+∞) | C. | [-$\frac{1}{2}$,+∞) | D. | R |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{1}{3}$ | B. | -$\frac{2}{3}$ | C. | $\frac{2\sqrt{5}}{5}$ | D. | -$\frac{2\sqrt{3}}{3}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | (-∞,2-$\sqrt{2}$] | B. | [2-$\sqrt{2}$,+∞) | C. | (-∞,2-$\sqrt{2}$) | D. | (2-$\sqrt{2}$,+∞) |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{1}{2}$+$\frac{1}{2}$i | B. | $\frac{1}{2}$-$\frac{1}{2}$i | C. | $\frac{1}{2}$i | D. | -$\frac{1}{2}$i |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com