精英家教网 > 高中数学 > 题目详情
18.设复数z1,z2在复平面内的对应点关于实轴对称,z1=2+i,则z1z2=(  )
A.3B.5C.-4+iD.4+i

分析 复数z1,z2在复平面内的对应点关于实轴对称,z1=2+i,可得z2=2-i.利用复数的运算法则即可得出.

解答 解:复数z1,z2在复平面内的对应点关于实轴对称,z1=2+i,∴z2=2-i.
则z1z2=(2+i)(2-i)=4+1=5.
故选:B.

点评 本题考查了复数的运算法则、几何意义,考查了推理能力与计算能力,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

1.已知椭圆${C_1}:\frac{x^2}{a^2}+\frac{y^2}{b^2}=1(a>b>0)$的顶点到直线l:y=x的距离分别为$\frac{{\sqrt{6}}}{2},\frac{{\sqrt{2}}}{2}$.
(1)求椭圆C1的离心率;
(2)过圆O:x2+y2=4上任意一点P作椭圆C1的两条切线PM和PN分别与圆交于点M,N,求△PMN面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.如图,在四棱锥P-ABCD中,∠ABC=∠ACD=90°,∠BAC=∠CAD=60°,PA⊥平面ABCD,PA=2,AB=1.
(1)设点E为PD的中点,求证:CE∥平面PAB;
(2)线段PD上是否存在一点N,使得直线CN与平面PAC所成的角θ的正弦值为$\frac{\sqrt{15}}{5}$?若存在,试确定点N的位置,若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.已知正数数列{an}的前n项和Sn满足:Sn和2的等比中项等于an和2的等差中项,则a1=2,Sn=2n2

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.函数y=e-|lnx|-|2-x|的图象大致为(  )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知函数f(x)=$\frac{1}{2}$ax2-lnx,a∈R
(Ⅰ)求函数f(x)的单调区间;
(Ⅱ)对?x1,x2∈[1,e],总有|f(x1)-f(x2)≤3成立,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.根据微信同程旅游的调查统计显示,参与网上购票的1000位购票者的年龄(单位:岁)情况如图所示.
(1)已知中间三个年龄段的网上购票人数成等差数列,求a,b的值;
(2)为鼓励大家网上购票,该平台常采用购票就发放酒店入住代金券的方法进行促销,具体做法如下:年龄在[30,50)岁的每人发放20元,其余年龄段的每人发放50元,先按发放代金券的金额采用分层抽样的方式从参与调查的1000位网上购票者中抽取5人,并在这5人中随机抽取3人进行回访调查,求此3人获得代金券的金额总和为90元的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.已知$α∈R,sinα+2cosα=\frac{{\sqrt{10}}}{2}$,则tan2α=(  )
A.$\frac{4}{3}$B.$\frac{3}{4}$C.$-\frac{3}{4}$D.$-\frac{4}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.某校高一1班、2班分别有10人和8人骑自行车上学,他们每天骑行路程(单位:千米)的茎叶图如图所示:则1班10人每天骑行路程的极差和2班8人每天骑行路程的中位数分别是(  )
A.14,9.5B.9,9C.9,10D.14,9

查看答案和解析>>

同步练习册答案