精英家教网 > 高中数学 > 题目详情
13.在△ABC中,∠BAC=60°,AB=5,AC=4,D是AB上一点,且$\overrightarrow{AB}$•$\overrightarrow{CD}$=5,则|$\overrightarrow{BD}$|等于(  )
A.2B.4C.6D.1

分析 依题意,作出图形,设$\overrightarrow{AD}$=k$\overrightarrow{AB}$,利用三角形法则可知$\overrightarrow{CD}$=$\overrightarrow{CA}$+$\overrightarrow{AD}$=-$\overrightarrow{AC}$+k$\overrightarrow{AB}$,再由$\overrightarrow{AB}$•$\overrightarrow{CD}$=5可求得k,从而可求得|$\overrightarrow{BD}$|的值.

解答 解:∵在△ABC中,∠BAC=60°,AB=5,AC=4,D是AB上一点,且$\overrightarrow{AB}$•$\overrightarrow{CD}$=5,
作图如下:

设$\overrightarrow{AD}$=k$\overrightarrow{AB}$,
∵$\overrightarrow{CD}$=$\overrightarrow{CA}$+$\overrightarrow{AD}$=-$\overrightarrow{AC}$+k$\overrightarrow{AB}$,
∴$\overrightarrow{AB}$•$\overrightarrow{CD}$=$\overrightarrow{AB}$•(-$\overrightarrow{AC}$+k$\overrightarrow{AB}$)=-|$\overrightarrow{AB}$||$\overrightarrow{AC}$|cos60°+k${\overrightarrow{AB}}^{2}$=-5×4×$\frac{1}{2}$+25k=5,
解得:k=$\frac{3}{5}$,
∴|$\overrightarrow{AD}$|=5×$\frac{3}{5}$=3,
∴|$\overrightarrow{BD}$|=5-3=2.
故选:A.

点评 本题考查平面向量数量积的运算,考查平面向量的加法运算(三角形法则)及平面向量共线基本定理的应用,考查数形结合思想,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

3.已知函数f(x)=$\frac{1}{2}$ax2-lnx,a∈R
(Ⅰ)求函数f(x)的单调区间;
(Ⅱ)对?x1,x2∈[1,e],总有|f(x1)-f(x2)≤3成立,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.已知向量$\overrightarrow{AB}=({1,0}),\overrightarrow{AC}=({-2,3})$,则$\overrightarrow{AB}•\overrightarrow{BC}$=-3.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.已知椭圆G:$\frac{x^2}{6}+\frac{y^2}{b^2}=1(0<b<\sqrt{6})$的两个焦点分别为F1和F2,短轴的两个端点分别为B1和B2,点P在椭圆G上,且满足|PB1|+|PB2|=|PF1|+|PF2|.当b变化时,给出下列三个命题:
①点P的轨迹关于y轴对称;
②存在b使得椭圆G上满足条件的点P仅有两个;
③|OP|的最小值为2,
其中,所有正确命题的序号是①③.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.某校高一1班、2班分别有10人和8人骑自行车上学,他们每天骑行路程(单位:千米)的茎叶图如图所示:则1班10人每天骑行路程的极差和2班8人每天骑行路程的中位数分别是(  )
A.14,9.5B.9,9C.9,10D.14,9

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.已知sin(θ-$\frac{π}{4}$)=$\frac{\sqrt{3}}{3}$,则sin2θ=(  )
A.$\frac{1}{3}$B.-$\frac{2}{3}$C.$\frac{2\sqrt{5}}{5}$D.-$\frac{2\sqrt{3}}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.已知$|{\overrightarrow a}|=2,|{\overrightarrow b}|=1,({\overrightarrow a-2\overrightarrow b})•({2\overrightarrow a+\overrightarrow b})=9$,则$|{\overrightarrow a+\overrightarrow b}$|=$\sqrt{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.已知函数f(x)=$\left\{\begin{array}{l}{\sqrt{-x}+a,x≤0}\\{(x-1)^{3}+1,x>0}\end{array}$,且?x0∈[2,+∞)使得f(-x0)=f(x0),则实数a的取值范围为(  )
A.(-∞,2-$\sqrt{2}$]B.[2-$\sqrt{2}$,+∞)C.(-∞,2-$\sqrt{2}$)D.(2-$\sqrt{2}$,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.已知集合A={x|2x-1>1},B={x|x(x-2)<0},则A∩B={x|1<x<2}..

查看答案和解析>>

同步练习册答案