精英家教网 > 高中数学 > 题目详情
1.已知椭圆G:$\frac{x^2}{6}+\frac{y^2}{b^2}=1(0<b<\sqrt{6})$的两个焦点分别为F1和F2,短轴的两个端点分别为B1和B2,点P在椭圆G上,且满足|PB1|+|PB2|=|PF1|+|PF2|.当b变化时,给出下列三个命题:
①点P的轨迹关于y轴对称;
②存在b使得椭圆G上满足条件的点P仅有两个;
③|OP|的最小值为2,
其中,所有正确命题的序号是①③.

分析 运用椭圆的定义可得P也在椭圆$\frac{{y}^{2}}{6}$+$\frac{{x}^{2}}{6-{b}^{2}}$=1上,分别画出两个椭圆的图形,即可判断①正确;
通过b的变化,可得②不正确;由图象可得当P的横坐标和纵坐标的绝对值相等时,|OP|的值取得最小,即可判断③.

解答 解:椭圆G:$\frac{x^2}{6}+\frac{y^2}{b^2}=1(0<b<\sqrt{6})$的两个焦点分别为
F1($\sqrt{6-{b}^{2}}$,0)和F2(-$\sqrt{6-{b}^{2}}$,0),
短轴的两个端点分别为B1(0,-b)和B2(0,b),
设P(x,y),点P在椭圆G上,且满足|PB1|+|PB2|=|PF1|+|PF2|,
由椭圆定义可得,|PB1|+|PB2|=2a=2$\sqrt{6}$>2b,
即有P在椭圆$\frac{{y}^{2}}{6}$+$\frac{{x}^{2}}{6-{b}^{2}}$=1上.
对于①,将x换为-x方程不变,则点P的轨迹关于y轴对称,
故①正确;
对于②,由图象可得轨迹关于x,y轴对称,且0<b<$\sqrt{6}$,
则椭圆G上满足条件的点P有4个,
不存在b使得椭圆G上满足条件的点P仅有两个,故②不正确;
对于③,由图象可得,当P满足x2=y2,即有6-b2=b2,即b=$\sqrt{3}$时,
|OP|取得最小值,可得x2=y2=2,即有|OP|的最小值为2,故③正确.
故答案为:①③.

点评 本题考查椭圆的定义和方程的运用,以及对称性,考查数形结合的思想方法,以及运算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

11.已知袋中装有大小相同的2个白球,2个红球和1个黄球.一项游戏规定:每个白球、红球和黄球的分值分别是0分、1分和2分,每一局从袋中一次性取出三个球,将3个球对应的分值相加后称为该局的得分,计算完得分后将球放回袋中.当出现第n局得n(n∈N*)分的情况就算游戏过关,同时游戏结束,若四局过后仍未过关,游戏也结束.
(1)求在一局游戏中得3分的概率;
(2)求游戏结束时局数X的分布列和数学期望E(X).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.如图,棱柱ABCD-A1B1C1D1中,底面ABCD是平行四边形,侧棱AA1⊥底面ABCD,AB=1,AC=$\sqrt{3}$,BC=BB1=2.
(Ⅰ)求证:AC⊥平面ABB1A1
(Ⅱ)求点D到平面ABC1的距离d.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知函数f(x)=sin(ωx-$\frac{π}{6}$)(ω>0)的图象与x轴的相邻两个交点的距离为$\frac{π}{2}$.
(1)求w的值;
(2)设函数g(x)=f(x)+2cos2x-1,求g(x)在区间$[0,\frac{π}{2}]$上的最大值和最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.若非零向量$\overrightarrow a$,$\overrightarrow b$满足|$\overrightarrow a$|=|$\overrightarrow a$+$\overrightarrow b$|=2,|$\overrightarrow b$|=1,则向量$\overrightarrow a$与$\overrightarrow b$夹角的余弦值为-$\frac{1}{4}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.已知O为△ABC的外心,且$\overrightarrow{BO}=λ\overrightarrow{BA}+μ\overrightarrow{BC}$.
①若∠C=90°,则λ+μ=$\frac{1}{2}$;
②若∠ABC=60°,则λ+μ的最大值为$\frac{2}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.在△ABC中,∠BAC=60°,AB=5,AC=4,D是AB上一点,且$\overrightarrow{AB}$•$\overrightarrow{CD}$=5,则|$\overrightarrow{BD}$|等于(  )
A.2B.4C.6D.1

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.如图,四棱锥P-ABCD中,PA⊥底面ABCD,底面ABCD是直角梯形,∠ADC=90°,AD∥BC,AB⊥AC,AB=AC=$\sqrt{2}$,点E在AD上,且AE=2ED.
(Ⅰ)已知点F在BC上,且CF=2FB,求证:平面PEF⊥平面PAC;
(Ⅱ)当二面角A-PB-E的余弦值为多少时,直线PC与平面PAB所成的角为45°?

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知矩阵A=$[\begin{array}{l}{a}&{3}\\{2}&{d}\end{array}]$,若A$[\begin{array}{l}{1}\\{2}\end{array}]$=$[\begin{array}{l}{8}\\{4}\end{array}]$,求矩阵A的特征值.

查看答案和解析>>

同步练习册答案