精英家教网 > 高中数学 > 题目详情
11.已知矩阵A=$[\begin{array}{l}{a}&{3}\\{2}&{d}\end{array}]$,若A$[\begin{array}{l}{1}\\{2}\end{array}]$=$[\begin{array}{l}{8}\\{4}\end{array}]$,求矩阵A的特征值.

分析 利用矩阵的乘法,求出a,d,利用矩阵A的特征多项式为0,求出矩阵A的特征值.

解答 解:因为A$[\begin{array}{l}{1}\\{2}\end{array}]$=$[\begin{array}{l}{a+6}\\{2+2d}\end{array}]$=$[\begin{array}{l}{8}\\{4}\end{array}]$,
所以$\left\{\begin{array}{l}{a+6=8}\\{2+2d=4}\end{array}\right.$,解得a=2,d=1.
所以矩阵A的特征多项式为f(λ)=$|\begin{array}{l}{λ-2}&{-3}\\{-2}&{λ-1}\end{array}|$=(λ-2)(λ-1)-6=(λ-4)(λ+1),
令f(λ)=0,解得矩阵A的特征值为λ=4或-1.

点评 本题考查矩阵的乘法,考查矩阵A的特征值,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

1.已知椭圆G:$\frac{x^2}{6}+\frac{y^2}{b^2}=1(0<b<\sqrt{6})$的两个焦点分别为F1和F2,短轴的两个端点分别为B1和B2,点P在椭圆G上,且满足|PB1|+|PB2|=|PF1|+|PF2|.当b变化时,给出下列三个命题:
①点P的轨迹关于y轴对称;
②存在b使得椭圆G上满足条件的点P仅有两个;
③|OP|的最小值为2,
其中,所有正确命题的序号是①③.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.已知函数f(x)=$\left\{\begin{array}{l}{\sqrt{-x}+a,x≤0}\\{(x-1)^{3}+1,x>0}\end{array}$,且?x0∈[2,+∞)使得f(-x0)=f(x0),则实数a的取值范围为(  )
A.(-∞,2-$\sqrt{2}$]B.[2-$\sqrt{2}$,+∞)C.(-∞,2-$\sqrt{2}$)D.(2-$\sqrt{2}$,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知函数$f(x)=lnx+\frac{a}{x}$(a∈R).
(Ⅰ)若函数f(x)在x=1处的切线平行于直线2x-y=0,求实数a的值;
(Ⅱ)讨论f(x)在(1,+∞)上的单调性;
(Ⅲ)若存在x0∈(1,+∞),使得f(x0)≤a成立,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.如图,在梯形ADEB中,AB∥DE,AD=DE=2AB,△ACD是正三角形,AB⊥平面ACD,且F是CD的中点.
(1)判断直线AF与平面BCE的位置关系并加以证明;
(2)求平面BCE与平面ACD所成锐二面角的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.在极坐标系中,圆ρ=2cosθ被直线ρcosθ=$\frac{1}{2}$所截得的弦长为$\sqrt{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.已知集合A={x|2x-1>1},B={x|x(x-2)<0},则A∩B={x|1<x<2}..

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.已知向量$\overrightarrow{a}$=(2,-3),$\overrightarrow{b}$=(-3,x)且存在实数λ使$\overrightarrow{a}$=λ$\overrightarrow{b}$,那么|2$\overrightarrow{a}$+$\overrightarrow{b}$|=$\frac{\sqrt{13}}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.已知函数f(x)=$\left\{\begin{array}{l}{|lo{g}_{4}x|,0<x≤4}\\{-x+5,x>4}\end{array}\right.$若关于x的方程f(x)-m=0有三个不相等的实数解x1,x2,x3,则x1•x2•x3的取值范围是(4,5).

查看答案和解析>>

同步练习册答案