精英家教网 > 高中数学 > 题目详情
19.已知ω>0,设x1,x2是方程sin(ωx+$\frac{π}{3}$)=$\frac{\sqrt{3}}{2}$的两个不同的实数根,且|x2-x1|的最小值为2,则ω等于(  )
A.$\frac{π}{2}$B.$\frac{π}{3}$C.$\frac{π}{4}$D.$\frac{π}{6}$

分析 由题意,ωx+$\frac{π}{3}$=$\frac{π}{3}$+2kπ或ωx+$\frac{π}{3}$=$\frac{2π}{3}$+2k′π,利用|x2-x1|的最小值为2,可得2ω=$\frac{π}{3}$,即可得出结论.

解答 解:∵sin(ωx+$\frac{π}{3}$)=$\frac{\sqrt{3}}{2}$,
∴ωx+$\frac{π}{3}$=$\frac{π}{3}$+2kπ或ωx+$\frac{π}{3}$=$\frac{2π}{3}$+2k′π,
∵|x2-x1|的最小值为2,
∴2ω=$\frac{π}{3}$,∴ω=$\frac{π}{6}$,
故选:D.

点评 本题考查正弦函数的图象与性质,考查学生的计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

9.如图所示,已知菱形ABCD是由等边△ABD与等边△BCD拼接而成,两个小圆与△ABD以及△BCD分别相切,则往菱形ABCD内投掷一个点,该点落在阴影部分内的概率为(  )
A.$\frac{\sqrt{3}}{9π}$B.$\frac{\sqrt{3}}{18π}$C.$\frac{\sqrt{3}π}{18}$D.$\frac{\sqrt{3}π}{9}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.若x,y满足$\left\{\begin{array}{l}x-y+1≥0\\ x+y≤0\\ y≥0\end{array}\right.$,则x+2y的最大值为(  )
A.-1B.0C.$\frac{1}{2}$D.2

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.某市小型机动车驾照“科二”考试共有五项考察项目,假设某人目前只训练了其中三个项目,现驾校欲从五项考察项目中任意抽出两项对其进行一次测试,则恰好抽到一项该人训练了的项目的概率为(  )
A.$\frac{3}{10}$B.$\frac{1}{2}$C.$\frac{3}{5}$D.$\frac{7}{10}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.数列{an}中,若an+1(an+1)=an,a1=1,则a6=$\frac{1}{6}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.已知数列{an},an=(2n+m)+(-1)n(3n-2)(m∈N*,m与n无关),若$\sum_{i=1}^{2m}$a2i-1≤k2-2k-1对一切m∈N*恒成立,则实数k的取值范围为(-∞,-1]∪[3,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.已知实数x,y满足$\left\{\begin{array}{l}{y≤x-1}\\{x≤3}\\{x+y≥2}\end{array}\right.$,则$\frac{y}{x}$的取值范围是[$-\frac{1}{3}$,$\frac{2}{3}$].

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.若变量x,y满足约束条件$\left\{\begin{array}{l}{x+2y≤2}\\{x+y≥0}\\{x≤4}\end{array}\right.$,则目标函数z=2x+y的最大值为(  )
A.-2B.4C.7D.8

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.过双曲线$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)的右顶点A作斜率为-1的直线l,该直线与双曲线的两条渐近线的交点分别为B,C.若$2\overrightarrow{AB}=\overrightarrow{BC}$,则双曲线的离心率是$\sqrt{5}$.

查看答案和解析>>

同步练习册答案