精英家教网 > 高中数学 > 题目详情
15.已知向量$\overrightarrow{a}$=(m,2),$\overrightarrow{b}$=(2,-1),且$\overrightarrow{a}$⊥$\overrightarrow{b}$,则$\frac{|2\overrightarrow{a}-\overrightarrow{b}|}{\overrightarrow{a}•(\overrightarrow{a}+\overrightarrow{b})}$等于(  )
A.$-\frac{5}{3}$B.1C.2D.$\frac{5}{4}$

分析 依题意,由$\overrightarrow{a}$•$\overrightarrow{b}$=2m-2=0⇒m=1,即$\overrightarrow{a}$=(1,2),于是可得2$\overrightarrow{a}$-$\overrightarrow{b}$=(0,5),|2$\overrightarrow{a}$-$\overrightarrow{b}$|=5,$\overrightarrow{a}$+$\overrightarrow{b}$=(3,1),$\overrightarrow{a}$•($\overrightarrow{a}$+$\overrightarrow{b}$)=1×3+2×1=5,从而可得$\frac{|2\overrightarrow{a}-\overrightarrow{b}|}{\overrightarrow{a}•(\overrightarrow{a}+\overrightarrow{b})}$的值.

解答 解:∵$\overrightarrow{a}$=(m,2),$\overrightarrow{b}$=(2,-1),
且$\overrightarrow{a}$⊥$\overrightarrow{b}$,
∴$\overrightarrow{a}$•$\overrightarrow{b}$=2m-2=0,
∴m=1,
∴$\overrightarrow{a}$=(1,2),2$\overrightarrow{a}$-$\overrightarrow{b}$=(0,5),|2$\overrightarrow{a}$-$\overrightarrow{b}$|=5,
又$\overrightarrow{a}$+$\overrightarrow{b}$=(3,1),$\overrightarrow{a}$•($\overrightarrow{a}$+$\overrightarrow{b}$)=1×3+2×1=5,
∴$\frac{|2\overrightarrow{a}-\overrightarrow{b}|}{\overrightarrow{a}•(\overrightarrow{a}+\overrightarrow{b})}$=$\frac{5}{5}$=1.
故选:B.

点评 本题考查平面向量数量积的坐标运算,求得m=1及2$\overrightarrow{a}$-$\overrightarrow{b}$=(0,5)、$\overrightarrow{a}$+$\overrightarrow{b}$=(3,1)是关键,考查运算求解能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

5.已知椭圆C:$\frac{x^2}{a^2}+\frac{y^2}{b^2}$=1(a>b>0)的短轴一个端点到右焦点F的距离为2,且过点$({-1,-\frac{{\sqrt{3}}}{2}})$.
(1)求椭圆C的方程;
(2)设M,N为椭圆C上不同的两点,A,B分别为椭圆C上的左右顶点,直线MN既不平行与坐标轴,也不过椭圆C的右焦点F,若∠AFM=∠BFN,求证:直线MN过定点.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知抛物线C:y2=4x的焦点为F,准线为l.⊙F与C交于A,B两点,与x轴的负半轴交于点P.
(Ⅰ)若⊙F被l所截得的弦长为$2\sqrt{5}$,求|AB|;
(Ⅱ)判断直线PA与C的交点个数,并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.已知向量$\overrightarrow{a}$=($\frac{\sqrt{3}}{2}$,$\frac{1}{2}$),$\overrightarrow{b}$=($\sqrt{3}$,-1),则$\overrightarrow{a}$,$\overrightarrow{b}$的夹角为(  )
A.$\frac{π}{4}$B.$\frac{π}{3}$C.$\frac{π}{2}$D.$\frac{2π}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知椭圆C:$\frac{{x{\;}^2}}{4}+\frac{y^2}{3}=1$,点P(4,0),过右焦点F作与y轴不垂直的直线l交椭圆C于A,B两点.
(Ⅰ)求椭圆C的离心率;
(Ⅱ)求证:以坐标原点O为圆心与PA相切的圆,必与直线PB相切.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.给出下列四个命题:
①若x∈A∩B,则x∈A或x∈B;
②?x∈(2+∞),都有x2>2x
③若a,b是实数,则a>b是a2>b2的充分不必要条件;
④“?x0∈R,x02+2>3x0”的否定是“?x∈R,x2+2≤3x”;
其中真命题的个数是(  )
A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.已知复数$z=\frac{{a+2{i^3}}}{2-i}$在复平面内对应的点在第四象限,则实数a的取值范围是(  )
A.(-∞,-1)B.(4,+∞)C.(-1,4)D.(-4,-1)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.如图1,在矩形ABCD中,AB=8,AD=3,点E,F分别为AB、CD的中点,将四边形AEFD沿EF折到A1EFD1的位置,使∠A1EB=120°,如图2所示,点G、H分别在A1B、D1C上,A1G=D1H=$\sqrt{3}$,过点G、H的平面α与几何体A1EB-D1FC的面相交,交线围成一个正方形.
(1)在图中画出这个正方形(不必说明画法和理由);
(2)求点E到平面α的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.设函数$f(x)=\left\{{\begin{array}{l}{x+1{,^{\;}}x>0}\\{{x^3}+a{,^{\;}}x≤0}\end{array}}\right.$则f(1)=2;若f(x)在其定义域内为单调递增函数,则实数a的取值范围是(-∞,1].

查看答案和解析>>

同步练习册答案