精英家教网 > 高中数学 > 题目详情
5.已知椭圆C:$\frac{x^2}{a^2}+\frac{y^2}{b^2}$=1(a>b>0)的短轴一个端点到右焦点F的距离为2,且过点$({-1,-\frac{{\sqrt{3}}}{2}})$.
(1)求椭圆C的方程;
(2)设M,N为椭圆C上不同的两点,A,B分别为椭圆C上的左右顶点,直线MN既不平行与坐标轴,也不过椭圆C的右焦点F,若∠AFM=∠BFN,求证:直线MN过定点.

分析 (1)由题意可知:a=2,将点代入椭圆方程,即可求得b的值,即可求得椭圆方程;
(2)设直线MN的方程y=k1x+m,代入椭圆方程,由韦达定理,及kFM+kFN=0,即可求得m=-$\frac{4\sqrt{3}}{3}$k1,直线MN的方程为y=k1(x-$\frac{4\sqrt{3}}{3}$),则直线MN过定点($\frac{4\sqrt{3}}{3}$,0).

解答 解:(1)由题意可知:短轴一个端点到右焦点F的距离为2,则a=2,
将$({-1,-\frac{{\sqrt{3}}}{2}})$代入椭圆方程可得$\frac{1}{4}+\frac{3}{4{b}^{2}}=1$,解得:b2=1,
∴椭圆的标准方程:$\frac{{x}^{2}}{4}+{y}^{2}=1$;
(2)证明:由(1)可知:F($\sqrt{3}$,0),
设直线MN的方程y=k1x+m,(k≠0),M(x1,y1),N(x2,y2).
则$\left\{\begin{array}{l}{y={k}_{1}x+m}\\{\frac{{x}^{2}}{4}+{y}^{2}=1}\end{array}\right.$,整理得:(1+2k12)x2+8k1mx+4m2-4=0,
x1+x2=-$\frac{8{k}_{1}m}{1+4{k}_{1}^{2}}$,x1x2=$\frac{4{m}^{2}-4}{1+4{k}_{1}^{2}}$,
由∠AFM=∠BFN,则kFM+kFN=0,$\frac{{y}_{1}}{{x}_{1}-\sqrt{3}}$+$\frac{{y}_{2}}{{x}_{2}-\sqrt{3}}$=0,
(k1x1+m)(x2-$\sqrt{3}$)+(k1x2+m)(x1-$\sqrt{3}$)=0,
整理得:2k1x1x2-(m-$\sqrt{3}$k1)(x1+x2)-2$\sqrt{3}$m=0,
则2k1×$\frac{4{m}^{2}-4}{1+4{k}_{1}^{2}}$-(m-$\sqrt{3}$k1)(-$\frac{8{k}_{1}m}{1+4{k}_{1}^{2}}$)-2$\sqrt{3}$m=0,
解得:m=-$\frac{4\sqrt{3}}{3}$k1
∴直线MN的方程为y=k1(x-$\frac{4\sqrt{3}}{3}$),
则直线MN过定点($\frac{4\sqrt{3}}{3}$,0).

点评 本题考查椭圆的标准方程,直线与椭圆的位置关系,考查韦达定理,直线的斜率公式,考查计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

8.已知定义在R上的奇函数f(x)满足当x≥0时,f(x)=1og2(x+2)+x+b,则|f(x)|>3的解集为(  )
A.(-∞,-2)∪(2,+∞)B.(-∞,-,4)∪(4,+∞)C.(-2,2)D.(-4,4)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.如图,在四棱锥P-ABCD中,∠ABC=∠ACD=90°,∠BAC=∠CAD=60°,PA⊥平面ABCD,E为PD的中点,PA=2,AB=1.
(1)求证:CE∥平面PAB;
(2)求三棱锥P-ACE的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.函数y=e-|lnx|-|2-x|的图象大致为(  )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.过点P(1,1)的直线,将圆形区域{x,y)|(x-2)2+y2≤4}分成两部分,使得这两部分的面积之差最大,则该直线的方程为(  )
A.x+y-2=0B.y-1=0C.x+3y-4=0D.x-y=0

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.根据微信同程旅游的调查统计显示,参与网上购票的1000位购票者的年龄(单位:岁)情况如图所示.
(1)已知中间三个年龄段的网上购票人数成等差数列,求a,b的值;
(2)为鼓励大家网上购票,该平台常采用购票就发放酒店入住代金券的方法进行促销,具体做法如下:年龄在[30,50)岁的每人发放20元,其余年龄段的每人发放50元,先按发放代金券的金额采用分层抽样的方式从参与调查的1000位网上购票者中抽取5人,并在这5人中随机抽取3人进行回访调查,求此3人获得代金券的金额总和为90元的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.如图,在几何体A1B1C1-ABC中,△ABC为等边三角形,AA1⊥平面ABC,AA1∥BB1∥CC1,BB1:CC1:AA1=3:2:1
(Ⅰ)求证:平面A1B1C1⊥平面A1ABB1
(Ⅱ)F为线段BB1上一点,当A1B1∥平面ACF时,求$\frac{{B}_{1}F}{{B}_{1}B}$的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知函数f(x)=xlnx.
(Ⅰ)求函数f(x)的单调区间和极值;
(Ⅱ)若f(x)≥m+$\frac{4}{m}$-k对任意的m∈[3,5]恒成立,求实数k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.已知向量$\overrightarrow{a}$=(m,2),$\overrightarrow{b}$=(2,-1),且$\overrightarrow{a}$⊥$\overrightarrow{b}$,则$\frac{|2\overrightarrow{a}-\overrightarrow{b}|}{\overrightarrow{a}•(\overrightarrow{a}+\overrightarrow{b})}$等于(  )
A.$-\frac{5}{3}$B.1C.2D.$\frac{5}{4}$

查看答案和解析>>

同步练习册答案