精英家教网 > 高中数学 > 题目详情
8.已知定义在R上的奇函数f(x)满足当x≥0时,f(x)=1og2(x+2)+x+b,则|f(x)|>3的解集为(  )
A.(-∞,-2)∪(2,+∞)B.(-∞,-,4)∪(4,+∞)C.(-2,2)D.(-4,4)

分析 利用f(0)=0,求出b,确定f(2)=3,函数在R上单调递增,利用函数的单调性,即可求出|f(x)|>3的解集.

解答 解:由题意,f(0)=1+b=0,∴b=-1,∴f(x)=1og2(x+2)+x-1,∴f(2)=3,函数在R上单调递增,
∵|f(x)|>3,∴|f(x)|>f(2),
∴f(x)>2或f(x)<-2,
∴x>2或x<-2,
故选:A.

点评 本题考查不等式的解法,考查函数的单调性,考查学生分析解决问题的能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

18.设正项数列{an}的前n项和Sn满足6Sn=an+12-9n(n∈N*),且a2,a3,a5构成等比数列,则数列{an}的通项公式为 an=3n-3.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.已知向量$\overrightarrow{a}$=(1,2),$\overrightarrow{b}$=(x,4),且$\overrightarrow{a}$⊥$\overrightarrow{b}$,那么x的值为(  )
A.-2B.-4C.-8D.-16

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.已知抛物线y2=8x上一点P到焦点的距离为4,则△PFO的面积为4.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知直线$l:\left\{\begin{array}{l}x=2+\frac{{\sqrt{2}}}{2}t\\ y=\frac{{\sqrt{2}}}{2}t\end{array}\right.(t$为参数),曲线$C:\left\{\begin{array}{l}x=cosθ\\ y=sinθ\end{array}\right.(θ$为参数).
(1)使判断l与C的位置关系;
(2)若把曲线C1上个点的横坐标压缩为原来的$\frac{1}{2}$倍,纵坐标压缩为原来的$\frac{{\sqrt{3}}}{2}$倍,得到曲线C2,设点P是曲线C2上一个动点,求它到直线l的距离的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.已知函数f(x)=$\left\{\begin{array}{l}{{e}^{x}+ax,x≤0}\\{(4-a)x+2a,x>0}\end{array}\right.$若对于任意两个不等实数x1,x2,都有$\frac{f({x}_{1})-f({x}_{2})}{{x}_{1}-{x}_{2}}$>1成立,则实数a的取值范围是(  )
A.[1,3)B.[$\frac{1}{2}$,3)C.[0,4)D.[$\frac{1}{2}$,4)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.已知等轴双曲线C的一个焦点是F1(-6,0),点M是等轴双曲线的渐近线上的一个动点,点P是圆(x+6)2+y2=1上的任意一点,则|PM|的最小值是(  )
A.3$\sqrt{2}$-1B.2$\sqrt{3}$-1C.3$\sqrt{3}$+1D.2$\sqrt{3}$+2

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.已知实数x,y满足$\left\{\begin{array}{l}{2x-y+6≥0}\\{x+y≥0}\\{x≤2}\end{array}\right.$,若目标函数z=-mx+y的最大值为-2m+10,最小值为-2m-2,则实数m的取值不可能是(  )
A.3B.2C.0D.-1

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知椭圆C:$\frac{x^2}{a^2}+\frac{y^2}{b^2}$=1(a>b>0)的短轴一个端点到右焦点F的距离为2,且过点$({-1,-\frac{{\sqrt{3}}}{2}})$.
(1)求椭圆C的方程;
(2)设M,N为椭圆C上不同的两点,A,B分别为椭圆C上的左右顶点,直线MN既不平行与坐标轴,也不过椭圆C的右焦点F,若∠AFM=∠BFN,求证:直线MN过定点.

查看答案和解析>>

同步练习册答案