精英家教网 > 高中数学 > 题目详情
19.已知向量$\overrightarrow{a}$=(1,2),$\overrightarrow{b}$=(x,4),且$\overrightarrow{a}$⊥$\overrightarrow{b}$,那么x的值为(  )
A.-2B.-4C.-8D.-16

分析 根据向量的垂直关系求出x的值即可.

解答 解:∵$\overrightarrow{a}$=(1,2),$\overrightarrow{b}$=(x,4),且$\overrightarrow{a}$⊥$\overrightarrow{b}$,
∴x+8=0,解得:x=-8,
故选:C.

点评 本题考查了平面向量的坐标运算以及向量垂直的应用问题,是基础题目.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

9.我国古代数学著作《九章算术》有如下问题:“今有器中米,不知其数,前人取半,中人三分取一,后人四分取一,余米一斗五升.问,米几何?”如图是解决该问题的程序框图,执行该程序框图,若输出的S=1.5(单位:升),则输入k的值为(  )
A.4.5B.6C.7.5D.9

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知函数f(x)=|x+2|,x∈R.
(1)解不等式f(2x)≤12-f(x-3);
(2)已知不等式f(2x)≤f(2x-3)+|x+a|的解集为M,且$M∩({\frac{1}{2},1})≠∅$,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.已知等比数列{an}为递增数列,Sn是其前n项和.若a1+a5=$\frac{17}{2}$,a2a4=4,则S6=(  )
A.$\frac{27}{16}$B.$\frac{27}{8}$C.$\frac{63}{4}$D.$\frac{63}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.如图,在几何体ABCDEF中,平面ADE⊥平面ABCD,四边形ABCD为菱形,且∠DAB=60°,EA=ED=AB=2EF,EF∥AB,M为BC中点.
(Ⅰ)求证:FM∥平面BDE;
(Ⅱ)求直线CF与平面BDE所成角的正弦值;
(Ⅲ)在棱CF上是否存在点G,使BG⊥DE?若存在,求$\frac{CG}{CF}$的值;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.已知$\frac{1}{1+i}=\frac{1}{2}$-ni其中n是实数,i是虚数单位,那么n=$\frac{1}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.设函数f(x)=(x-a)•ex,a∈R.
(Ⅰ)当a=1时,试求f(x)的单调增区间;
(Ⅱ)试求f(x)在[1,2]上的最大值;
(Ⅲ)当a=1时,求证:对于?x∈[-5,+∞),$f(x)+x+5≥-\frac{6}{e^5}$恒成立.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.已知定义在R上的奇函数f(x)满足当x≥0时,f(x)=1og2(x+2)+x+b,则|f(x)|>3的解集为(  )
A.(-∞,-2)∪(2,+∞)B.(-∞,-,4)∪(4,+∞)C.(-2,2)D.(-4,4)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.如图,在四棱锥P-ABCD中,∠ABC=∠ACD=90°,∠BAC=∠CAD=60°,PA⊥平面ABCD,E为PD的中点,PA=2,AB=1.
(1)求证:CE∥平面PAB;
(2)求三棱锥P-ACE的体积.

查看答案和解析>>

同步练习册答案