精英家教网 > 高中数学 > 题目详情
10.已知函数f(x)=|x+2|,x∈R.
(1)解不等式f(2x)≤12-f(x-3);
(2)已知不等式f(2x)≤f(2x-3)+|x+a|的解集为M,且$M∩({\frac{1}{2},1})≠∅$,求实数a的取值范围.

分析 (1)分类讨论,即可解不等式;
(2)x∈($\frac{1}{2}$,1),不等式f(2x)≤f(2x-3)+|x+a|,即|x+a|≥3,求出M∩($\frac{1}{2}$,1)=∅的a的范围,再求补集即可.

解答 解:(1)不等式f(2x)≤12-f(x-3),即|2x+2|+|x-1|≤12.
x<-1时,不等式化为-2x-2-x+1≤12,解得x≥-$\frac{13}{3}$,∴-$\frac{13}{3}$≤x<-1;
-1≤x≤1时,不等式化为2x+2-x+1≤12,解得x≤9,∴-1≤x≤1;
x>1时,不等式化为2x+2+x-1≤12,解得x≤$\frac{11}{3}$,∴1<x≤$\frac{11}{3}$;
综上所述,不等式的解集为[-$\frac{13}{3}$,$\frac{11}{3}$];
(2)x∈($\frac{1}{2}$,1),不等式f(2x)≤f(2x-3)+|x+a|,即|x+a|≥3,
∴x≤-a-3或x≥-a+3,若M∩($\frac{1}{2}$,1)=∅,
∴$\left\{\begin{array}{l}{-a-3≤\frac{1}{2}}\\{-a+3≥1}\end{array}\right.$,∴-$\frac{7}{2}$≤a≤2,
∵$M∩({\frac{1}{2},1})≠∅$,∴a<-$\frac{7}{2}$或a>2.

点评 本题考查不等式的解法,考查恒成立问题,考查分类讨论的数学思想,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

20.在等差数列{an}中,若a6+a8+a10=72,则2a10-a12的值为(  )
A.20B.22C.24D.28

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.以直角坐标系的原点O为极点,x轴的正半轴为极轴,且两个坐标系取相等的单位长度.已知直线l的参数方程是$\left\{\begin{array}{l}x=\frac{1}{2}t\\ y=3+\frac{{\sqrt{3}}}{2}t\end{array}\right.$(t为参数),曲线C的极坐标方程是ρcos2θ=4sinθ.
(1)写出直线l的普通方程和曲线C的直角坐标方程;
(2)设直线l与曲线C相交于A,B两点,点M为AB的中点,点P的极坐标为$(4\sqrt{3},\frac{π}{3})$,求|PM|的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.设正项数列{an}的前n项和Sn满足6Sn=an+12-9n(n∈N*),且a2,a3,a5构成等比数列,则数列{an}的通项公式为 an=3n-3.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.已知函数f(x)=2cos(ωx+$\frac{3}{2}$π)(ω>0)的最小正周期为2π,则函数f(x)图象的一条对称轴方程为(  )
A.x=$\frac{π}{4}$B.x=$\frac{π}{2}$C.x=$\frac{3}{4}$πD.x=π

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知向量$\overrightarrow a=({2cosα,{{sin}^2}α}),\overrightarrow b=({2sinα,t}),α∈({0,\frac{π}{2}}),t$为实数.
(1)若$\overrightarrow a-\overrightarrow b=({\frac{2}{5},0})$,求t的值;
(2)若t=1,且$\overrightarrow a•\overrightarrow b=1$,求$tan({2α+\frac{π}{4}})$的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.“x>0,y>0”是“$\frac{y}{x}+\frac{x}{y}≥2$”的(  )
A.充分而不必要条件B.必要而不充分条件
C.充分必要条件D.既不充分也不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.已知向量$\overrightarrow{a}$=(1,2),$\overrightarrow{b}$=(x,4),且$\overrightarrow{a}$⊥$\overrightarrow{b}$,那么x的值为(  )
A.-2B.-4C.-8D.-16

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.已知等轴双曲线C的一个焦点是F1(-6,0),点M是等轴双曲线的渐近线上的一个动点,点P是圆(x+6)2+y2=1上的任意一点,则|PM|的最小值是(  )
A.3$\sqrt{2}$-1B.2$\sqrt{3}$-1C.3$\sqrt{3}$+1D.2$\sqrt{3}$+2

查看答案和解析>>

同步练习册答案