| A. | $\frac{π}{4}$ | B. | $\frac{π}{3}$ | C. | $\frac{π}{2}$ | D. | $\frac{2π}{3}$ |
分析 利用两个向量的数量积公式、两个向量的数量积的定义,求得cosθ的值,可得$\overrightarrow{a}$,$\overrightarrow{b}$的夹角θ的值.
解答 解:设$\overrightarrow{a}$,$\overrightarrow{b}$的夹角为θ,θ∈[0,π],∵向量$\overrightarrow{a}$=($\frac{\sqrt{3}}{2}$,$\frac{1}{2}$),$\overrightarrow{b}$=($\sqrt{3}$,-1),
∴$\overrightarrow{a}•\overrightarrow{b}$=$\frac{\sqrt{3}}{2}•\sqrt{3}$-$\frac{1}{2}$=|$\overrightarrow{a}$|•|$\overrightarrow{b}$|•cosθ=1•2cosθ,
求得cosθ=$\frac{1}{2}$,∴θ=$\frac{π}{3}$,
故选:B.
点评 本题主要考查两个向量的数量积公式、两个向量的数量积的定义,属于基础题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 14,9.5 | B. | 9,9 | C. | 9,10 | D. | 14,9 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $-\frac{5}{3}$ | B. | 1 | C. | 2 | D. | $\frac{5}{4}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | (-∞,-1) | B. | (4,+∞) | C. | (-1,4) | D. | (-4,-1) |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | (0,1) | B. | (1,4) | C. | (0,1)∪(1,+∞) | D. | (0,1)∪(1,4) |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com