精英家教网 > 高中数学 > 题目详情
6.已知抛物线C:y2=4x的焦点为F,准线为l.⊙F与C交于A,B两点,与x轴的负半轴交于点P.
(Ⅰ)若⊙F被l所截得的弦长为$2\sqrt{5}$,求|AB|;
(Ⅱ)判断直线PA与C的交点个数,并说明理由.

分析 (Ⅰ)若⊙F被l所截得的弦长为$2\sqrt{5}$,求出圆的半径,得到圆的方程,即可求|AB|;
(Ⅱ)求出P的坐标,即可判断直线PA与C的交点个数,

解答 解:(Ⅰ)抛物线C:y2=4x的焦点为F(1,0),
∵⊙F被l所截得的弦长为$2\sqrt{5}$,
∴圆的半径为$\sqrt{5+4}$=3,
∴⊙F的方程为(x-1)2+y2=9,
与y2=4x联立可得A(2,2$\sqrt{2}$),B(2,-2$\sqrt{2}$),∴|AB|=4$\sqrt{2}$;
(Ⅱ)(x-1)2+y2=9,令y=0,可得P(4,0),
∵A(2,2$\sqrt{2}$),∴直线PA与C的交点个数为2.

点评 本题考查圆的方程,考查抛物线的方程与性质,考查学生的计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

16.如图,在四棱锥P-ABCD中,∠ABC=∠ACD=90°,∠BAC=∠CAD=60°,PA⊥平面ABCD,E为PD的中点,PA=2,AB=1.
(1)求证:CE∥平面PAB;
(2)求三棱锥P-ACE的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.如图,在几何体A1B1C1-ABC中,△ABC为等边三角形,AA1⊥平面ABC,AA1∥BB1∥CC1,BB1:CC1:AA1=3:2:1
(Ⅰ)求证:平面A1B1C1⊥平面A1ABB1
(Ⅱ)F为线段BB1上一点,当A1B1∥平面ACF时,求$\frac{{B}_{1}F}{{B}_{1}B}$的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知函数f(x)=xlnx.
(Ⅰ)求函数f(x)的单调区间和极值;
(Ⅱ)若f(x)≥m+$\frac{4}{m}$-k对任意的m∈[3,5]恒成立,求实数k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知函数f(x)=x2eax
(Ⅰ)当a<0时,讨论函数f(x)的单调性;
(Ⅱ)在(1)条件下,求函数f(x)在区间[0,1]上的最大值;
(Ⅲ)设函数g(x)=2ex-$\frac{lnx}{x}$,求证:当a=1,对?x∈(0,1),g(x)-xf(x)>2恒成立.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知椭圆C:x2+4y2=4.
(1)求椭圆C的离心率;
(2)椭圆C的长轴的两个端点分别为A,B,点P在直线x=1上运动,直线PA,PB分别与椭圆C相交于M,N两个不同的点,求证:直线MN与x轴的交点为定点.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.如图,四棱柱ABCD-A1B1C1D1中,底面ABCD为菱形,AA1⊥底面ABCD,E为B1D的中点.
(Ⅰ)证明:平面ACE⊥平面ABCD;
(Ⅱ)若AA1=AB=1,点C到平面AED的距离为$\frac{{\sqrt{2}}}{2}$,求三棱锥C-AED的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.已知向量$\overrightarrow{a}$=(m,2),$\overrightarrow{b}$=(2,-1),且$\overrightarrow{a}$⊥$\overrightarrow{b}$,则$\frac{|2\overrightarrow{a}-\overrightarrow{b}|}{\overrightarrow{a}•(\overrightarrow{a}+\overrightarrow{b})}$等于(  )
A.$-\frac{5}{3}$B.1C.2D.$\frac{5}{4}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.已知定义域为$[{\frac{1}{3},3}]$的函数f(x)满足:当$x∈[{\frac{1}{3},1}]$时,$f(x)=2f(\frac{1}{x})$,且当x∈[1,3]时,f(x)=lnx,若在区间$[{\frac{1}{3},3}]$内,函数g(x)=f(x)-ax的图象与x轴有3个不同的交点,则实数a的取值范围是(  )
A.$(0,\frac{1}{e})$B.$(0,\frac{1}{2e})$C.$[\frac{ln3}{3},\frac{1}{e})$D.$[\frac{ln3}{3},1)$

查看答案和解析>>

同步练习册答案